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Abstract

The interest for coatomic lattices comes back to H.Bass [1] (1960)
who defined B-objects, i.e. modules M such that every submodule
N 6= M is contained in a maximal submodule.

Several authors (Stenström[9] and Crawley-Dilworth [6] being the
first ones) gave latticial generalizations of very much well-known re-
sults in module theory, lattice theory being the natural general setting
for these results.

In what follows, we relate coatomic lattices with the radical, the su-
perfluous elements and study the particular case of the abelian groups.
Two classes , one dual to the cocyclic groups and the other, the groups
having exactly one maximal subgroup, are characterized.

1 Latticial Results.

ZZ

In what follows we shall use four similar (and dual) conditions: a lattice
L is called atomic if for every 0 6= a ∈ L the sublattice a/0 contains atoms,
coatomic if for every a 6= 1,1/a contains maximal elements, reduced if for
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every a 6= 0 , a/0 contains maximal elements and torsion (semiartinian)
if for every a 6= 1, 1/a contains atoms . The lattice L satisfies the condition
(R3) if for every a 6= 1, a essential in L, 1/a contains atoms. For all the
latticial notions and notation we refer to [6]. All the applications concern
abelian groups.

Proposition 1.1 (Krull)-Every compact lattice is coatomic.2

Proposition 1.2 Let L be a modular lattice and a ∈ L. If a/0 and 1/a are
coatomic then L is coatomic.

Proof. Let c 6= 1. We distinguish two cases: if a∨c 6= 1 the sublattice 1/a
being coatomic there is an element m maximal in 1/a and hence maximal
in L such that c ≤ a ∨ c ≤ m. If a ∨ c = 1 then a ∧ c 6= a (otherwise
a ∧ c = a ⇔ a ≤ c ⇔ a ∨ c = c = 1) and a/0 being coatomic there is an
element m maximal in a/0 such that a ∧ c ≤ m 6= a . Using the modularity
of L we verify that m ∨ c is maximal in L and so L is coatomic. Indeed,
from (m ∨ c) ∧ a = m ∨ (c ∧ a) = m we have a/m = a/(a ∧ (m ∨ c))
∼= (a ∨ (m ∨ c))/(m ∨ c) = 1/(m ∨ c) so that m ∨ c is maximal in L.2

Remark 1.1 If L is coatomic and a ∈ L then 1/a is also coatomic but
generally a/0 is not.

Indeed, if a/0 is not coatomic and we adjoin a greatest element 1, 1/0 = L
becomes coatomic (L \ {1} = a/0 has a greatest element) - see also Proposi-
tion 6.

Definition 1.1 (Benabdallah,Piche[2]) A complete lattice L is called redu-
cible if its socle s(L) = 1 and inductive if for each a ∈ L and every chain
{bi}i∈I , ∀i ∈ I,a ∧ bi = 0 =⇒ a ∧ (

∨
i∈I bi) = 0 and each factor sublattice

(interval) of L has this property.

Observe that a modular, reducible and inductive lattice is complemented
and atomic (e.g.Theorem 9.2 [2]).

Definition 1.2 We say that a complemented lattice L has enough com-
plements if for every a, b ∈ L such that a ∧ b = 0, a admits a complement
c ∈ L such that b ≤ c.
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Lemma 1.1 Every modular, atomic, complemented and inductive lattice has
enough complements.

Proof. Let D = {x ∈ L | b ≤ x, a ∧ x = 0}. D 6= ∅ because b ∈ D and
so, applying Zorn’s Lemma, let c be maximal in D (in fact , L inductive =⇒
L pseudo-complemented ). If a ∨ c 6= 1, L being complemented, let d be
a complement of a ∨ c. We have d 6= 0 (otherwise (a ∨ c) ∨ d = 1 implies
a ∨ c = 1) so, L being atomic, there is an atom s ≤ d. Hence (a ∨ c) ∧ s = 0
and from a∧ c = 0 one has ([2] lemma 2.2) a∧ (c∨ s) = 0, which contradicts
the maximality of c. So c is a complement of a , b ≤ c and L has enough
complements.2

Lemma 1.2 Every modular, reducible and inductive lattice has enough com-
plements.

Proof. Let {ui}i∈I
be the set of all the atoms of L, J = {i ∈ I | ui ≤ a} ,

T = {i ∈ I | ui ≤ b} and c =
∨

i∈J ui, d =
∨

i∈T ui. Hence c = s(a/0) and c/0
being inductive, c is a direct sum of atoms ([2] theorem 8.6: in every inductive
lattice s(1) is a direct sum of atoms). There is a subset K ⊆ J such that
c = ⊕i∈Kui and similarly P ⊆ T such that d = ⊕i∈P ui. So c ∧ d = 0 follows
from a∧ b = 0 and hence (⊕i∈Kui)∧ (⊕i∈P ui) = 0. Therefore {ui}i∈K∪P is an
independent set in L (surely K ∩ P = ∅). This independent set is contained
in a maximal independent set of atoms in L ([2] lemma 8.4: one can use
Zorn’s Lemma in the set of all the independent subsets of L) say 1 = ⊕i∈Rui

([2] lemma 8.5) and K ∪ P ⊆ R ⊆ I. We consider now y = ⊕i∈R\Kui so
that c ⊕ y = 1. From the modularity we deduce c ⊕ (y ∧ a) = a (using
c ≤ a ≤ c⊕ y = 1) so if y ∧ a 6= 0 there is an atom uj ≤ y ∧ a with j ∈ I ([2]
proposition 4.7) and even j ∈ J (because uj ≤ a); hence uj ≤ c. But then
uj ≤ c ∧ (y ∧ a) = 0, contradiction. So y ∧ a = 0, c = a and 1 = a ⊕ y. We
now continue simmetrically: let x = ⊕i∈R\P ui so that d⊕x = 1. We see that
x ∧ b = 0 and so b = d ≤ y, because P ⊆ R \ K.2

Proposition 1.3 Every modular, atomic, inductive lattice with enough com-
plements is coatomic.

Proof. Let a 6= 1 and b be a complement of a in L. Surely b 6= 0 (otherwise
a ∨ b = 1 ⇒ a = 1) so there is an atom s ≤ b such that a ∧ s = 0 (because
a∧ b = 0). L having enough complements, let m be a complement of s which
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contains a. In a modular lattice the complement of an atom is a maximal
element and conversely, so that m is a maximal element of L.2

Consequence 1.1 Every modular, inductive, atomic and complemented lat-
tice is coatomic. -Every modular, inductive and reducible lattice is coatomic.

In fact, we have the following

Theorem 1.1 A modular inductive lattice L is reducible iff L is coatomic
and every maximal element has a complement.

Proof. A reducible, inductive lattice being complemented (cf.[2]) we need
to justify only the converse of the second Consequence above. L being
coatomic, if s(L) = a 6= 1, let m be maximal in 1/a and, by hypothesis,
c 6= 0 a complement of m. As a complement of a maximal element c is an
atom in L. But a ≤ m and m ∧ c = 0 implies a ∧ c = 0 or s(L) ∧ c = 0 so
that c ≤ s(L) implies c = 0, contradiction.2

The lattice of an abelian group is modular and inductive. It is reducible
iff the group is elementary.

Proposition 1.4 LetL be a modular lattice and a ∈ L. If a ≤ r(L) and
a/0 is coatomic then a is superfluous in L.

Proof. If a is not superfluous in L, there is 1 6= c ∈ L such that a∨ c = 1.
Then a ≤ c does not hold (otherwise c = a∨ c = 1) and hence a∧ c 6= a. The
sublattice a/0 being coatomic there is an element m maximal in a/(a ∧ c).
Using the modularity m ∨ c is maximal in (a ∨ c)/c = 1/c. But in this case
a ≤ r(L) ≤ m ∨ c and so 1 = a ∨ c ≤ m ∨ c, contradiction.2

In order to get the converse we must add some

Definition 1.3 An element d ∈ L is called divisible if d/0 contains no
maximal elements. We say that L satisfies the condition (*) if in L every
divisible element has a complement. L satisfies the condition (D) if for each
a ∈ L the sublattice 1/a satisfies (*).

Remark 1.2 In an algebraic (compactly generated) lattice one can easily
prove (cf.[5]) that d is divisible iff r(d/0) = dor iff in d/0 all compact ele-
ments are superfluous.
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Proposition 1.5 If a lattice L satisfies the condition (D) then for every
superfluous element a ∈ L the sublattice a/0 is coatomic and a ≤ r(L).

Proof. The implication: a superfluous in L ⇒ a ≤ r(L), is well-known in
every complete lattice. If a/0 is not coatomic, there is an element b 6= a, b ≤ a
such that a/b has no maximal elements. Hence a is divisible in 1/b and has
a complement c in 1/b. Then a ∨ c = 1, a ∧ c = b and from c 6= 1 (otherwise
a ∧ c = b implies a = b) we deduce that a is not superfluous in L.2

In this way we have the following characterization

Theorem 1.2 If the modular lattice L satisfies the condition (D) an element
a is superfluous iff a/0 is coatomic and a ≤ r(L).2

Remark 1.3 In the lattice of all subgroups of an abelian group the condition
(D) is clearly satisfied.

- The characterization of the superfluous elements given above is some-
what dual to the following one(cf.[3]): in a modular algebraic lattice L which

satisfies (R3) an element a is essential iff 1/a is torsion and s(L) ≤ a.
- Dual to ”in a complete atomic lattice the socle is the smallest essential

element” one has also ”in a complete coatomic lattice the radical is superflu-
ous” and if the lattice is algebraic the radical is also the greatest superfluous
element.

The relations between atomic and torsion lattices being recorded in [3]
the next result connects coatomic lattices to reduced ones.

Proposition 1.6 A modular, coatomic lattice which satisfies the condition
(D) is reduced.

Proof. If L is not reduced there is an element 0 6= a ∈ L such that
a/0 contains no maximal elements. But then a is divisible and let b be a
complement of a in L = 1/0 (cf.(D)). Using modularity we have a/0 =
a/a ∧ b ∼= a ∨ b/b = 1/b so that 1/b has no maximal elements (a 6= 0 implies
b 6= 1). Hence L is not coatomic.2

Proposition 1.7 For a complete lattice L, L\{1} has a greatest element iff
L is coatomic and r(L) is maximal in L.
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Proof. If L has a greatest element m 6= 1 all the maximal elements
coincide with m and with r(L) so that every element 6= 1 is contained in m,
so that L is coatomic.

Conversely, if r(L) is maximal in L then r(L) is the unique maximal
element of L. If L is coatomic, every element is contained in r(L) so that
1 6= r(L) is the greatest element in L \ {1} .2

Remark 1.4 Following [11] such lattices could be called local.
- One easily gets: a lattice L is local iff r(L) is superfluous and maximal.

2 Applications.

In what follows we characterize the class (dual to the cocyclic groups) of all
the abelian groups G such that the lattice of all the subgroups of G has a
greatest element 6= G (is local) and the class of all the abelian groups G
which have a unique maximal subgroup. For all the abelian group notions
and notations we refer to [8].We first recall from [9]

Lemma 2.1 G has a unique maximal subgroup iff there is a prime number
p such that |G/pG| = p and qG = G for each prime q 6= p.

A simple proof. The radical of the lattice of all subgroups of G is the
Frattini subgroup of G, well-known as Φ(G) =

⋂
{pG | p prime number }

(cf.[7]). A subgroup M of G is maximal iff there is a prime number p such
that G/M has p elements. Moreover Φ(G) is the intersection of all the
maximal subgroups of G.

If M is the unique maximal subgroup of G then Φ(G) = M = pG for a
prime number p, so that |G/pG| = p and qG = G for each prime number
q 6= p (otherwise Φ(G) 6= pG). Conversely, from the hypothesis we deduce
that pG is the unique maximal subgroup of G (we use the well-known result

pG =
⋂
{M | M (maximal) subgroup of G such that |G/M | = p}).2

In what follows we call an abelian group near-divisible if it has a unique
maximal subgroup , i.e. is q-divisible for every prime q 6= p and G/pG ∼=ZZ(p).
Torsion near-divisible examples are ZZ(pk) and ZZ(p∞)⊕ZZ(p) and torsion-free
near-divisible groups are |Qp and Jp. Neither has coatomic subgroup lattice.

Proposition 2.1 For a group G the lattice of all subgroups of G is local iff
G is near-divisible and has no divisible factor groups.
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Proof. Using Lemma 3 and Proposition 6 the only argument left is: G
has coatomic subgroup lattice iff G has no divisible factor groups. But this is
obvious because a group is divisible iff it has no maximal subgroups and one
has the well-known lattice isomorphism between an interval of subgroups of
G, i.e.[H, G) and the proper subgroups of G/H.2

As mentioned above in what follows we determine the abelian groups with
a local lattice of subgroups and the near-divisible groups.

The first task is simple. Indeed, groups with local lattice of subgroups are
cyclic and indecomposable (see[11]: the so-called hollow groups are used). ZZ

having not a local lattice of subgroups, the finite cocyclic groups (i.e.ZZ(pk))
are the only groups with local lattice of subgroups. Hence the groups with a

smallest proper subgroup are the cocyclic ones and the groups with a greatest

proper subgroup are the finite cocyclic ones..
In order to determine the near-divisible groups we need some reductions.

Lemma 2.2 G is near-divisible iff G = D ⊕R for a non-zero near-divisible
reduced group R and a divisible group D.

Proof. Let D be the greatest divisible subgroup of G and G = D ⊕ R
with R reduced. R 6= 0 because a divisible group is not near-divisible (it has
no maximal subgroups). For each prime q 6= p one has D⊕ qR = qD⊕ qR =
qG = G = D⊕R so that R = qR. Moreover D = ∩ttD ⊆ ∩ttG = pG where t
denotes a prime number, so that R/pR = R/R∩pG ∼= (R+pG)/pG = G/pG.
The converse is similar (and uses the same isomorphism).2

Lemma 2.3 Every near-divisible reduced group is indecomposable.

Proof. Let G be a near-divisible reduced group and G = A⊕B. For every
prime q 6= p we have qA ⊕ qB = qG = A ⊕ B and hence qA = A, qB = B.
Moreover, G/pG ∼= A/pA ⊕ B/pB ∼=ZZ(p) so that for instance |A/pA| = p
and B/pB = 0. But hence B is divisible and B = 0.2

Consequence 2.1 Every near-divisible torsion reduced group is finite co-
cyclic.2

Indecomposable mixed groups do not exist so the problem reduces to the
torsion-free case.
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Lemma 2.4 G is a near-divisible reduced torsion-free group iff G is isomor-
phic to a pure and dense subgroup of Jp.

Proof. In the above given hypothesis, the p-adic completion Ĝ of G is
also near-divisible (because from pG = pĜ ∩ G and G + pĜ = Ĝ we deduce
G/pG ∼= Ĝ/pĜ). The direct summand B0 of a basic subgroup B of Ĝ
cannot decompose into more than one copy of Jp because Jp/pJp

∼= ZZ(p)

and otherwise we would no more have Ĝ/pĜ ∼=ZZ(p). So B ∼=Jp and hence

Ĝ ∼=Jp.Conversely, each pure and dense subgroup A of Jp is near-divisible
because A+pJp = Jp and pA = A∩pJp and hence A/pA ∼=Jp/pJp

∼= Z(p).2
Finally we have

Theorem 2.1 Each near-divisible group is a direct sum of a finite cocyclic
or a pure dense subgroup of the p-adic integers with a possible zero divisible
group.2
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