COATOMIC LATTICES AND
RELATED ABELIAN GROUP
TOPICS

Grigore Calugareanu
Dept.of Algebra
Faculty of Mathematics-Informatics
"Babeg-Bolyai” University
Cluj-Napoca, Romania

Abstract

The interest for coatomic lattices comes back to H.Bass [1] (1960)
who defined B-objects, i.e. modules M such that every submodule
N # M is contained in a maximal submodule.

Several authors (Stenstrom[9] and Crawley-Dilworth [6] being the
first ones) gave latticial generalizations of very much well-known re-
sults in module theory, lattice theory being the natural general setting
for these results.

In what follows, we relate coatomic lattices with the radical, the su-
perfluous elements and study the particular case of the abelian groups.
Two classes , one dual to the cocyclic groups and the other, the groups
having exactly one maximal subgroup, are characterized.

1 Latticial Results.

Z

In what follows we shall use four similar (and dual) conditions: a lattice
L is called atomic if for every 0 # a € L the sublattice a/0 contains atoms,
coatomic if for every a # 1,1/a contains maximal elements, reduced if for



every a # 0, a/0 contains maximal elements and torsion (semiartinian)
if for every a # 1, 1/a contains atoms . The lattice L satisfies the condition
(R3) if for every a # 1, a essential in L, 1/a contains atoms. For all the
latticial notions and notation we refer to [6]. All the applications concern
abelian groups.

Proposition 1.1 (Krull)-Every compact lattice is coatomic.O

Proposition 1.2 Let L be a modular lattice and a € L. If a/0 and 1/a are
coatomic then L is coatomic.

Proof. Let ¢ # 1. We distinguish two cases: if aV ¢ # 1 the sublattice 1/a
being coatomic there is an element m maximal in 1/a and hence maximal
in L such that ¢ < aVe < m. If aVe =1 then a Ac # a (otherwise
aNc=a<a<ceaVe=c=1)and a/0 being coatomic there is an
element m maximal in a/0 such that a A ¢ < m # a . Using the modularity
of L we verify that m V ¢ is maximal in L and so L is coatomic. Indeed,
from (mVe)Aa = mV (cAa) = m we have a/m = a/(a N (m V ¢))
= (aV(mVe)/(mVe)=1/(mVc)sothat mV ¢ is maximal in L.O

Remark 1.1 If L is coatomic and a € L then 1/a is also coatomic but
generally a/0 is not.

Indeed, if /0 is not coatomic and we adjoin a greatest element 1, 1/0 = L
becomes coatomic (L \ {1} = a/0 has a greatest element) - see also Proposi-
tion 6.

Definition 1.1 (Benabdallah,Piche[2]) A complete lattice L is called redu-
cible if its socle s(L) = 1 and inductive if for each a € L and every chain
{bitic; s Vi€ ILanb; =0 = aA (Vi b)) = 0 and each factor sublattice
(interval) of L has this property.

Observe that a modular, reducible and inductive lattice is complemented
and atomic (e.g.Theorem 9.2 [2]).

Definition 1.2 We say that a complemented lattice L has enough com-
plements if for every a,b € L such that a ANb =0, a admits a complement
c € L such that b < c.



Lemma 1.1 FEvery modular, atomic, complemented and inductive lattice has
enough complements.

Proof. Let D = {x € L|b<z,aNxz=0}. D # () because b € D and
so, applying Zorn’s Lemma, let ¢ be maximal in D (in fact , L inductive =
L pseudo-complemented ). If a V ¢ # 1, L being complemented, let d be
a complement of a V ¢. We have d # 0 (otherwise (a V ¢) V d = 1 implies
aV c=1) so, L being atomic, there is an atom s < d. Hence (aVc)As=0
and from a A ¢ = 0 one has ([2] lemma 2.2) a A (¢ V s) = 0, which contradicts
the maximality of ¢. So ¢ is a complement of a , b < ¢ and L has enough
complements.O

Lemma 1.2 FEvery modular, reducible and inductive lattice has enough com-
plements.

Proof. Let {u;},.; be the set of all the atoms of L, J ={i € I |u; <a},
T={iel|u; <b}and c=V;c;u;,d=V;eru;. Hence ¢ = s(a/0) and ¢/0
being inductive, ¢ is a direct sum of atoms ([2] theorem 8.6: in every inductive
lattice s(1) is a direct sum of atoms). There is a subset K C J such that
¢ = @;exu; and similarly P C T such that d = ®;cpu;. So ¢ A d = 0 follows
from a Ab = 0 and hence (®iext;) A (Diepu;) = 0. Therefore {u;}, o p is an
independent set in L (surely K N P = (). This independent set is contained
in a maximal independent set of atoms in L ([2] lemma 8.4: one can use
Zorn’s Lemma in the set of all the independent subsets of L) say 1 = @;cgru;
([2] lemma 8.5) and K UP C R C I. We consider now y = @;cp\ gU; SO
that ¢ ®y = 1. From the modularity we deduce ¢ @ (y A a) = a (using
c<a<chdy=1)soif y a0 thereis an atom u; <y Aa with j € I ([2]
proposition 4.7) and even j € J (because u; < a); hence u; < c. But then
u; < cA(yAa) =0, contradiction. SoyAa=0,c=aand 1l =ady. We
now continue simmetrically: let x = @®;cgr\pu; so that d®x = 1. We see that
xAb=0and sob=d<y,because P C R\ K.O

Proposition 1.3 Fvery modular, atomic, inductive lattice with enough com-
plements is coatomic.

Proof. Let a # 1 and b be a complement of a in L. Surely b # 0 (otherwise
aVb=1= a=1)so there is an atom s < b such that a A s = 0 (because
a/Ab=0). L having enough complements, let m be a complement of s which
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contains a. In a modular lattice the complement of an atom is a maximal
element and conversely, so that m is a maximal element of L.O

Consequence 1.1 FEvery modular, inductive, atomic and complemented lat-
tice is coatomic. -FEvery modular, inductive and reducible lattice is coatomic.

In fact, we have the following

Theorem 1.1 A modular inductive lattice L is reducible iff L is coatomic
and every maximal element has a complement.

Proof. A reducible, inductive lattice being complemented (cf.[2]) we need
to justify only the converse of the second Consequence above. L being
coatomic, if s(L) = a # 1, let m be maximal in 1/a and, by hypothesis,
¢ # 0 a complement of m. As a complement of a maximal element ¢ is an
atom in L. But a < m and m A ¢ = 0 implies a A ¢ = 0 or (L) Ac =0 so
that ¢ < s(L) implies ¢ = 0, contradiction.O

The lattice of an abelian group is modular and inductive. It is reducible
iff the group is elementary.

Proposition 1.4 LetL be a modular lattice and a € L. If a < r(L) and
a/0 is coatomic then a is superfluous in L.

Proof. If a is not superfluous in L, there is 1 # ¢ € L such that aVe = 1.
Then a < ¢ does not hold (otherwise ¢ = a V¢ = 1) and hence a Ac # a. The
sublattice a/0 being coatomic there is an element m maximal in a/(a A c).
Using the modularity m V ¢ is maximal in (a V ¢)/c = 1/c. But in this case
a<r(L)y<mVcandsol=aVc<mV e contradiction.O

In order to get the converse we must add some

Definition 1.3 An element d € L is called divisible if d/0 contains no
mazximal elements. We say that L satisfies the condition (*) if in L every
divisible element has a complement. L satisfies the condition (D) if for each
a € L the sublattice 1/a satisfies (*).

Remark 1.2 In an algebraic (compactly generated) lattice one can easily
prove (cf.[5]) that d is divisible iff r(d/0) = dor iff in d/0 all compact ele-

ments are superfluous.



Proposition 1.5 If a lattice L satisfies the condition (D) then for every
superfluous element a € L the sublattice a/0 is coatomic and a < r(L).

Proof. The implication: a superfluous in L = a < r(L), is well-known in
every complete lattice. If a/0 is not coatomic, there is an element b # a,b < a
such that a/b has no maximal elements. Hence a is divisible in 1/b and has
a complement ¢ in 1/b. Then a V¢ =1,a A ¢ = b and from ¢ # 1 (otherwise
a A ¢ = b implies a = b) we deduce that a is not superfluous in L.O

In this way we have the following characterization

Theorem 1.2 [f the modular lattice L satisfies the condition (D) an element
a is superfluous iff a/0 is coatomic and a < r(L).0

Remark 1.3 In the lattice of all subgroups of an abelian group the condition
(D) is clearly satisfied.

- The characterization of the superfluous elements given above is some-
what dual to the following one(cf.[3]): in a modular algebraic lattice L which
satisfies (R3) an element a is essential iff 1/a is torsion and s(L) < a.

- Dual to 7in a complete atomic lattice the socle is the smallest essential
element” one has also 7in a complete coatomic lattice the radical is superflu-
ous” and if the lattice is algebraic the radical is also the greatest superfluous
element.

The relations between atomic and torsion lattices being recorded in [3]
the next result connects coatomic lattices to reduced ones.

Proposition 1.6 A modular, coatomic lattice which satisfies the condition

(D) is reduced.

Proof. If L is not reduced there is an element 0 # a € L such that
a/0 contains no maximal elements. But then a is divisible and let b be a
complement of a in L = 1/0 (cf.(D)). Using modularity we have a/0 =
a/a Nb=aVb/b=1/bso that 1/b has no maximal elements (a # 0 implies
b # 1). Hence L is not coatomic.O

Proposition 1.7 For a complete lattice L, L\ {1} has a greatest element iff
L is coatomic and r(L) is maximal in L.



Proof. If L has a greatest element m # 1 all the maximal elements
coincide with m and with r(L) so that every element # 1 is contained in m,
so that L is coatomic.

Conversely, if r(L) is maximal in L then r(L) is the unique maximal
element of L. If L is coatomic, every element is contained in (L) so that
1 # r(L) is the greatest element in L\ {1}.0

Remark 1.4 Following [11] such lattices could be called local.
- One easily gets: a lattice L is local iff r(L) is superfluous and maximal.

2 Applications.

In what follows we characterize the class (dual to the cocyclic groups) of all
the abelian groups G such that the lattice of all the subgroups of G has a
greatest element # G (is local) and the class of all the abelian groups G
which have a unique maximal subgroup. For all the abelian group notions
and notations we refer to [8].We first recall from [9]

Lemma 2.1 G has a unique maximal subgroup iff there is a prime number
p such that |G/pG| = p and qG = G for each prime q # p.

A simple proof. The radical of the lattice of all subgroups of G is the
Frattini subgroup of G, well-known as ®(G) = N{pG | p prime number }
(cf.[7]). A subgroup M of G is maximal iff there is a prime number p such
that G/M has p elements. Moreover ®(G) is the intersection of all the
maximal subgroups of G.

If M is the unique maximal subgroup of G then ®(G) = M = pG for a
prime number p, so that |G/pG| = p and ¢G = G for each prime number
q # p (otherwise ®(G) # pG). Conversely, from the hypothesis we deduce
that pG is the unique maximal subgroup of G (we use the well-known result

pG = N{M | M (maximal) subgroup of G such that |G/M|=p}).0

In what follows we call an abelian group near-divisible if it has a unique
maximal subgroup , i.e. is ¢g-divisible for every prime ¢ # p and G /pG =Z(p).
Torsion near-divisible examples are Z(p*) and Z(p*>°)®Z(p) and torsion-free
near-divisible groups are Q, and J,. Neither has coatomic subgroup lattice.

Proposition 2.1 For a group G the lattice of all subgroups of G is local iff
G 1s near-divisible and has no divisible factor groups.
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Proof. Using Lemma 3 and Proposition 6 the only argument left is: G
has coatomic subgroup lattice iff G has no divisible factor groups. But this is
obvious because a group is divisible iff it has no maximal subgroups and one
has the well-known lattice isomorphism between an interval of subgroups of
G, i.e.[H,G) and the proper subgroups of G/H.O

As mentioned above in what follows we determine the abelian groups with
a local lattice of subgroups and the near-divisible groups.

The first task is simple. Indeed, groups with local lattice of subgroups are
cyclic and indecomposable (see[11]: the so-called hollow groups are used). Z
having not a local lattice of subgroups, the finite cocyclic groups (i.e.Z(p"))
are the only groups with local lattice of subgroups. Hence the groups with a
smallest proper subgroup are the cocyclic ones and the groups with a greatest
proper subgroup are the finite cocyclic ones..

In order to determine the near-divisible groups we need some reductions.

Lemma 2.2 G is near-divisible iff G = D @& R for a non-zero near-divisible
reduced group R and a divisible group D.

Proof. Let D be the greatest divisible subgroup of G and G = D & R
with R reduced. R # 0 because a divisible group is not near-divisible (it has
no maximal subgroups). For each prime ¢ # p one has D @ qR = ¢D ©qR =
qgG =G = D® R so that R = qR. Moreover D = NytD C M;tG = pG where t
denotes a prime number, so that R/pR = R/RNpG = (R+pG)/pG = G/pG.

The converse is similar (and uses the same isomorphism).O
Lemma 2.3 FEvery near-divisible reduced group is indecomposable.

Proof. Let G be a near-divisible reduced group and G = A® B. For every
prime ¢ # p we have ¢A ® gB = qG = A ® B and hence gA = A, ¢B = B.
Moreover, G/pG = A/pA & B/pB =Z(p) so that for instance |A/pA| = p
and B/pB = 0. But hence B is divisible and B = 0.0

Consequence 2.1 FEvery near-divisible torsion reduced group is finite co-
cyclic.0

Indecomposable mixed groups do not exist so the problem reduces to the
torsion-free case.



Lemma 2.4 G s a near-divisible reduced torsion-free group iff G is isomor-
phic to a pure and dense subgroup of J,,.

Proof. In the above given hypothesis, the p-adic completion G of G is
also near-divisible (because from pG = pG NG and G + pG G we deduce
G/pG = G/pG). The direct summand By of a basic subgroup B of G
cannot decompose into more than one copy of J, because J,/pJ,= Z(p)
and otherwise we would no more have G/pG =Z(p). So B =J, and hence
G =J,.Conversely, each pure and dense subgroup A of J, is near-divisible
because A+pJ, =J, and pA = ANpJ, and hence A/pA =J,/pJ, = Z(p).O

Finally we have

Theorem 2.1 FEach near-divisible group is a direct sum of a finite cocyclic
or a pure dense subgroup of the p-adic integers with a possible zero divisible
group.O]
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