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Abstract

Formalizing some well-known routines in algebraic lattices, we give

two new equivalent definitions for this class. A natural generalization of

algebraic lattices is defined and discussed, called compactic lattice.

All lattices considered in the sequel will be complete lattices. We use the
quotient sublattice notation from [1] for intervals.

1 General Case

We first formalize some well-known routines in algebraic lattices. This gives the
following general frame.

Let A be nonempty subset of a lattice L.
Definitions. The lattice L is called A-generated if every element of L is a

join of elements from A and A-separated if for every a > b there is an element
x ∈ A with x ≤ a and x � b. Moreover, denote by a/A = {x ∈ A|x ≤ a} and
call a lattice A-large if a ≤ b whenever ∅ 6= a/A ⊆ b/0. Finally, a lattice is
A-ctic, if every nonzero element has a nonzero lower bound in A.

The special cases which could be of interest are A = K = K(L) the set of
all the compact elements of a lattice L (notice that here 0 ∈ A), A = A(L) the
set of all the atoms of L (notice that here 0 ∈ A) and A = N(L) the set of
all the Noetherian elements of L (an element a ∈ L is called Noetherian if the
sublattice a/0 satisfies the ACC).

Remark 1 A-separated can (equivalently) be defined also as follows: if b � a,
there is an element x ∈ A with x ≤ a and x 
 b.

Indeed, since b � a happens when a > b or a‖b (i.e., the elements are
not comparable), this definition is apparently stronger. However, if a‖b then
a > a ∧ b, and by the first definition, there is an element x ∈ A with x ≤ a but
x 
 a ∧ b. Since x ≤ b would imply x ≤ a ∧ b, we have x 
 b, as desired.

Note that a lattice is A-generated if and only if for every a ∈ L, a =
∨

a/A
(i.e., =

∨

{x|x ∈ a/A).

Theorem 2 The following conditions are equivalent for a lattice L:
(i) L is A-separated;
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(ii) L is A-generated;
(iii) L is A-large.

Proof. (i) =⇒ (ii) Suppose L is not A-generated. Using the equivalent def-
inition mentioned above, there exists an element b ∈ L such that b >

∨

b/A.
Denoting a =

∨

b/A, clearly b/A ⊆ a/A and so a < b are not separated (and so
L is not A-separated). It is easy to obtain from this (i) =⇒ (iii).

(ii) =⇒ (iii)
Further, if the lattice is A-generated, it is also A-large. Indeed, since a/A ⊆

b/0 implies a/A ⊆ b/A, we obtain
∨

a/A ≤
∨

b/A and the previous remark
gives a ≤ b.

(iii) =⇒ (i) If a > b, suppose there is no x ∈ a/A which satisfies x 
 b (i.e., L
is not A-separated). Then a/A ⊆ b/0 and since a 
 b the lattice is not A-large.

Proposition 3 Every A-generated lattice is A-ctic.

Proof. Indeed, if 0 /∈ A, let 0 6= a ∈ L. Since a =
∨

a/A and
∨

∅ = 0, we
derive a/A 6= ∅ and L is A-ctic. If 0 ∈ A then we have to compare a =

∨

a/A
and

∨

{0} = 0 in order to obtain {0} $ a/A, and again L is A-ctic.

Remark 4 If a lattice is A-separated (or equivalently A-generated), then A
contains the atoms of L.

Indeed, atoms a > 0 are separated from 0 (if and) only if a ∈ A.
Summarizing
A-generated ⇐⇒ A-separated ⇐⇒ A-large =⇒ A-ctic.

2 Special case A = K(L)

In this study we concentrate on the first special case, that is A = K, the compact
elements of a lattice L.

We shall use the terms compactly-separated, compactly-large and compactic

(for K-ctic). Actually, in compactly generated lattices, (very often) this is the
way someone checks an inequality a ≤ b: it suffices to check c ≤ b for all compact
elements c ≤ a (that is, the compactly-large definition).

From the previous section we have at once

Corollary 5 The following conditions are equivalent for a lattice L:
(a) L is compactly generated
(b) L is compactly-separated
(b) L is compactly-large.

For the sake of completeness, recall that in the literature (see [1]), both
proofs for

Proposition 6 (i) Every compactly-generated lattice is weakly atomic, and
(ii) Every compactly-generated lattice is upper continuous,
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actually rely on the compactly-separated property. Examples are customarily
given in order to show that these (last two) inclusions are proper (e.g., see [1]).

Proposition 7 All these classes are included in the atom-compact class (i.e.,
every atom is compact).

Proof. Compactic lattices: obvious.
Upper continuous lattices: let a ∈ L be an atom in an upper continuous

lattice L. If a ≤
∨

D for an upper directed subset D ⊆ L observe that for each
d ∈ D, a ∧ d = a or a ∧ d = 0. Hence a 
 d for each d ∈ D is not possible: we
would have a = a ∧ (

∨

D) =
∨

(a ∧ d) =
∨

0 = 0.
Weakly atomic does not generally imply atom-compact. See the next exam-

ple.

Summarizing
finite =⇒ Noetherian =⇒ [compactly generated ⇐⇒ compactly-separated

⇐⇒ compactly-large]

{

ր compactic ց
ց upper continuous ր

atom-compact.

An example of lattice which is not atom-compact is given in [3] (Figure 3.1
(b), p. 28)

.
.

z

.

the element z is not compact, and in this case nor join of compact elements
(z is an atom which is not compact). So none of the properties in our first chart,
but the lattice is Artinian and so (strongly) atomic and weakly atomic.

Remark 8 If 0 is the only compact of a lattice L, this lattice is not compactic,
nor compactly-generated.

Indeed, for every x, y ∈ L, x/K = {0} = y/0 would imply x ≤ y and y ≤ x.
Such examples abound:
1) ([0, 1],≤), i.e., the interval of real numbers with the usual order.
2) Jeffrey Leon’s example ([1], p. 16): invented in order to show that an

upper continuous weakly atomic lattice is not always compactly generated.
3) L = {0} ∪ {2r3s|r, s ∈ N} be ordered by divisibility ([2], Ex. 7.2, p.

169).

In order to legitimate the compactic class of lattices, we supply an example

of compactic lattice, which is not compactly generated.
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Indeed, the element z is not compact (the cover z ≤
∨

n

bn has no finite

subcover), nor join of compact elements (hence the lattice is not compactly
generated). However, every (nonzero) element has a compact lower bound (a,
b1, b2, ... are compact and z and 1 have compact lower bounds), and so the
lattice is compactic.

More, this lattice:
it is not upper continuous - z = z ∧ 1 = z ∧ (

∨

bn) 6=
∨

(z ∧ bn) =
∨

a = a;
it is not compactly large - z/K = {a} ⊆ b1/0 but z ≤ b1 fails;
it is atomic, and atom-compact, but not atom generated
it is not Noetherian, but it is Artinian and so strongly atomic.

The example above also shows that compactic =⇒ upper continuos, fails.

The converse also fails: an example of upper continuous lattice which is not

compactic is the Jeffrey Leon example mentioned above.
Finally, in order to show that all inclusions are proper, here are some exam-

ples of atom-compact lattice which is not compactic

First of all, if 0 is the only compact element, the lattice is trivially atom-
compact if it has no atoms! And ([0, 1],≤), i.e., the interval of real numbers
with the usual order, is such an example. Less trivial (but somehow similar) we
have
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None of an is compact and so has no nonzero compact lower bound. The
only atom b1 is compact.

3 Theoretical example ?

For an arbitrary lattice L, both the lattice of all the ideals I(L) and the lattice
of all congruences Con(L) are compactly-generated.

The lattice of all the convex sublattices CS(L) is also atomic and compactly
generated.

It would be interesting to find a theoretical example of lattice associated with
an (arbitrary) lattice which is compactic, but generally not compactly-generated.

...
Final comment. Since compact elements in an arbitrary sublattice cannot

be related to the compact elements in the whole lattice, as compactly generated
lattices do, this new class does not form a (quasi)variety. Actually, quotient
of complete lattices may be non-complete, so since compact element definition
needs completeness, there is no hope for a variety. Nor quasivariety, because of
sublattices.
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