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Abstract

We characterize 2 × 2 exchange matrices over commutative domains.

In addition, we emphasize large classes of not exchange 2 × 2 and 3 × 3

integral matrices.

1 Introduction

An element a in a unital ring R is called clean ([8]) if a = e+u with idempotent
e and unit u and e-clean, if we intend to emphasize the idempotent. A clean
element is called trivial if its decomposition uses a trivial idempotent i.e., 0 or
1. These are the 0-clean and 1-clean elements, respectively.

Also in [8], exchange elements (called suitable) were defined into four equiv-
alent ways. One of these is: an element a in a ring R is (left) exchange if there
is an idempotent e such that e− a ∈ R(a− a2). Every left exchange element is
also right exchange and conversely. Clean elements are exchange ([8]).

Clean 2× 2 integral matrices are characterized (see e.g. [2]) by pairs of one
quadratic Diophantine equation (in two variables) and one linear Diophantine
equation (in three variables). Since nowadays such equations are instantly solved
by computer (see [1], [9] respectively [7]), it would be useful to have a criterion
(checkable by computer) to decide on the exchange property of a matrix in
M2(Z).

In this note we characterize the exchange 2 × 2 matrices over commutative
domains. It turns out that these are still characterized by pairs of conditions:
but now one quadratic equation (in three variables) and one linear equation (in
three or four variables).

In addition, we prove two special results, which mainly permit to emphasize
large classes of not exchange 2× 2 but also 3× 3 integral matrices.

Whenever it is more convenient, we will use the widely accepted shorthand
“iff” for “if and only if” in the text. All rings we consider are unital.
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2 Exchange 2× 2 integral matrices

First notice that an element a in a ring R is exchange iff there is an element
m ∈ R such that c := a + m(a − a2) is an idempotent. Observe that if this
idempotent is trivial, then a is clean and so exchange. More precisely, we have
the following

Lemma 1 Let a be an element in a Dedekind finite ring R. There exists an
element m ∈ R such that

(i) a+m(a− a2) = 0 iff 1− a is a unit (i.e. 1-clean);
(ii) a+m(a− a2) = 1 iff a is a unit (i.e. 0-clean).

Proof. The equality can be written as (i) (1 − ma)(1 − a) = 1 and (ii) [1 +
m(1− a)]a = 1, respectively, so since R is Dedekind finite, 1− a is a unit, or a
is a unit. Conversely, if 1− a is a unit, we can chose m = (1− a)−1, and if a is
a unit, we can chose m = a−1.

Remark. Notice that tripotents, i.e. elements f ∈ R such that f = f3 are
(strongly) clean (see e.g. [3]) and so exchange.

In this section, R denotes a commutative domain. Notice that a 2×2 matrix
E is idempotent iff E ∈ {02, I2}, or else Tr(E) = 1, det(E) = 0. Also observe
that, since left exchange elements are also right exchange and conversely, a
matrix is exchange iff so is its transpose.

Let A be a 2× 2 matrix over R. By Cayley-Hamilton Theorem,

A−A2 = (1− Tr(A))A + det(A)I2.

Next, we prove a characterization for exchange matrices A with Tr(A) =:
t 6= 1 over any commutative domain. To simplify the writing we shall use the
following notations: α = det(A) + (1− t)(a+ t), β = (1 − t)c, γ = (1 − t)b and
δ = det(A)− (1− t)a.

Theorem 2 A trace t 6= 1, 2×2 matrix A =

[

a+ t b
c −a

]

is exchange over a

commutative domain R iff A is a unit, or I2−A is a unit, or A is an idempotent,
or

(i) if β = 0, there exist m11,m12,m21 ∈ R such that

(a+ t+ αm11)(−a+ 1− t− αm11) = (b+ γm11 + δm12)αm21

and m22 with 1− t = αm11 + γm21 + δm22.
(ii) if δ = 0, there exist m11,m21,m22 ∈ R such that

(a+ 1− γm21)(−a+ γm21) = (b + γm11)(c+ αm21 + βm22)
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and m12 with 1− t = αm11 + βm12 + γm21.
(iii) if β 6= 0 6= δ, there exist m11,m12,m21 ∈ R such that

δ(a+ t+ αm11 + βm12)[−a+ 1− t− (αm11 + βm12)] =

(b + γm11 + δm12){cδ + αδm21 + β[1− t− (αm11 + βm12 + γm21)]}

and m22 with 1− t = αm11 + βm12 + γm21 + δm22.

Proof. As mentioned before A − A2 = (1 − t)A + det(A)I2 and we have only
to discuss the case C is a nontrivial idempotent (otherwise, by Lemma 1, A is
0-clean or 1-clean).

Now C =
[

a+ t b
c −a

]

+

[

m11 m12

m21 m22

] [

det(A) + (1− t)(a+ t) (1− t)b
(1 − t)c det(A)− (1− t)a

]

and
Tr(C) = 1 iff (m11+m22) det(A)+(1−t)[m11(a+t)+m12c+m21b−m22a−1] =

0, and
det(C) = 0 iff [a+t+m11 det(A)+(1−t)(m11(a+t)+m12c)][−a+m22 det(A)+

(1− t)(m21b−m22a)] =
= [b+m12 det(A) + (1− t)(m11b−m12a)][c+m21 det(A) + (1− t)(m21(a+

t) +m22c)].
For the proof, we show that using Tr(C) = 1 we can always eliminate m22

or m12 from the equality det(C) = 0, this way obtaining a quadratic equation,
to be solved in R.

Using the notations introduced above, Tr(C) = 1 is equivalent to αm11 +
βm12 + γm21 + δm22 = 1− t and det(C) = 0 is equivalent to

(a+t+αm11+βm12)(−a+γm21+δm22) = (b+γm11+δm12)(c+αm21+βm22)(∗∗)

We go into three cases.
(i) β = 0; since t 6= 1 this is equivalent to c = 0. Then we replace δm22 =

1− t− (αm11 + γm21) into

(a+ t+ αm11)(−a+ γm21 + δm22) = (b + γm11 + δm12)αm21

and for any given m11, this is a quadratic equation in unknowns m12, m21.
(ii) δ = 0; this is equivalent to det(A) = (1 − t)a. Now we replace βm12 =

1− t− (αm11 + γm21) into

(a+ t+ αm11 + βm12)(−a+ γm21) = (b + γm11)(c+ αm21 + βm22)

and for any given m11, this is a quadratic equation in unknowns m21, m22.
(iii) β 6= 0 6= δ; this is equivalent to c 6= 0 and det(A) 6= (1 − t)a. In this

case we multiply by β, αm11 + βm12 + γm21 + δm22 = 1 − t and by δ the
equality (∗∗). Now we replace δm22 = 1 − t − (αm11 + βm12 + γm21) and
βδm22 = β[1− t− (αm11 + βm12 + γm21)] into

δ(a+t+αm11+βm12)(−a+γm21+δm22) = (b+γm11+δm12)(cδ+αδm21+βδm22)
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and for any given m11, this is a quadratic equation in unknowns m12, m21.
The equations we obtain are displayed in the statement of the theorem.

Examples. 1) A =

[

3 3
0 −1

]

. For m11 = 0 we have to solve the quadratic

equation (3 − 2m12)m21 = 1. Among the solutions, if we chose (m12,m21) =

(2,−1) we get M =

[

0 2
−1 2

]

and C =

[

3 −1
6 −2

]

, an idempotent. The linear

equation becomes 3m21 + 2m22 = 1, also verified by m21 = −1, m22 = 2. So A
is exchange over any ring.

2) A =

[

2 3
0 1

]

. Here det(A) = (1 − t)a.

The linear equation is m11 + 3m21 = 1 which has no solution for m11 = 0,
unless 3 is a unit.

However, for m11 = 1 we have m21 = 0 and the linear equation is verified
for any m12, m22. The quadratic equation is 36m2

21
= 0, also verified by m21 =

0. Hence we can chose M =

[

1 u
0 v

]

(arbitrary elements u, v) and C =
[

0 −3
0 1

]

is idempotent. So A is exchange over any ring.

3) A =

[

1 3
1 1

]

. Here c 6= 0 and det(A) 6= (1− t)a.

For m11 = 0 we have to solve the quadratic equation 3(1 − m12)(−2 +
6m21) = 0 with solution m12 = 1 and arbitrary m21, say (m12,m21) = (1, y).

Then m22 = −y and for M =

[

0 1
y −y

]

we obtain C =

[

0 0
1− 2y 1

]

, an

idempotent. The linear equation becomes −m12−3m21−3m22 = 1, also verified
by m12 = 1,m21 = y,m22 = −y. So A is exchange over any ring.

4) Ak =

[

2k + 1 0
0 0

]

for any integer k. Here (i) amounts to

t(1− t)[1 + (1− t)m11](1 − tm11) = 0.

Since m11 = 1

t−1
∈ Z only for t ∈ {0, 2} (which are not odd), and m11 = 1

t
∈ Z

only for t ∈ {±1}, such matrices are exchange only if t ∈ {±1}. Indeed, E11 is
an idempotent, so exchange and −E11 is exchange as tripotent. Hence all Ak,
k /∈ {−1, 0} are not exchange over Z.

Remarks. 1) When checking for exchange a 2 × 2 matrix A, one should
first verify whether A or A − I2 are invertible. If this fails then we use the

previous (general) theorem. For instance, for the matrix A =

[

1 3
0 1

]

(which

is a unit) (ii) is not (always) applicable (e.g. over Z). Indeed, by computation
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C =

[

1 3(1−m11)
0 1− 3m21

]

so Tr(C) = 2 − 3m21 6= 1 unless 3 is a unit. Actually,

C = C2 iff the left column ofM is

[

1
0

]

(arbitrary right column) and so C = I2.

2) Related to our research, from [6] we recall

Corollary 3.7 Let R = M2(S) where S is any ring, and let A =

[

a b
c d

]

∈

R. If b or c is a unit, then a is exchange in R.
It can be shown that if we replace b by any unit (or symmetrically c) in

Theorem 2, the equations there, have solutions. In order not to lengthen this
paper we only discuss the b is a unit case for t 6= 1, that is, using Theorem 2.

The linear equation is αm11 + βm12 + (1 − t)bm21 + δm22 = 1 − t which
obviously admits the solution m11 = m12 = m22 = 0 and m21 = b−1. It is
easy to check that this solution also verifies the quadratic equation and so for
M = b−1E21, C = A+ b−1E21(A− A2) is an idempotent. Hence A is (indeed)
exchange over any ring.

3 Special characterizations

In this section, in order to simplify the exposition, we deal with integral ma-
trices. The astute reader will easily realize how the results that follow may be
generalized over principal ideal domains.

We show how one can exploit the situation A−A2 = M2(nZ), for a positive
n ≥ 2.

First we have the following

Proposition 3 Let n ∈ Z, n ≥ 2 and let A ∈

[

nZ+ 1 nZ
nZ nZ+ 1

]

⊂ M2(Z).

Then A is exchange iff A is a unit iff det(A) ∈ {±1}.

Proof. One way is clear. Conversely, suppose A is exchange. Notice that

A2 ∈

[

nZ+ 1 nZ
nZ nZ+ 1

]

and so A − A2 = nB for some B ∈ M2(Z). Then

C = A+M(A−A2) = A+ nMB and so Tr(C) ∈ 2 + nZ.
If n = 2, C is idempotent only if it is trivial (i.e. the trace is 0 or 2). For

A ∈

[

2Z+ 1 2Z
2Z 2Z+ 1

]

we have I2 −A = 2S, M(I2 − A) = 2T , I2 +M(I2 −

A) ∈

[

2Z+ 1 2Z
2Z 2Z+ 1

]

and so C 6= 02 because C = [I2 + M(I2 − A)]A ∈
[

2Z+ 1 2Z
2Z 2Z+ 1

]

. In the remaining case, C = [I2 +M(I2 −A)]A = I2, so A

is a unit (we use Lemma 1).
If n ≥ 3, again C is idempotent only if it is trivial. Now C 6= 02 follows from

C ∈

[

nZ+ 1 nZ
nZ nZ+ 1

]

, and so only C = I2 remains. Using again Lemma 1,

A must be a unit.
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Next

Proposition 4 For n ∈ Z, n ≥ 2, let A ∈ M2(nZ). The following conditions
are equivalent

(i) A is exchange.
(ii) there is a matrix M such that A+M(A−A2) = 02.
(iii) A− I2 is a unit.
(iv) A is 1-clean.

Proof. (i) ⇒ (ii) Suppose A is exchange. By hypothesis, A, A2, A − A2,
M(A − A2) and C = A + M(A − A2), all belong to M2(nZ). Hence C 6= I2
and since Tr(C) is multiple of n, that is 6= 1 (i.e. C is not nontrivial), the
idempotent C = 02. (ii) ⇒ (iii) Use Lemma 1. (iii) ⇒ (iv) and (iv) ⇒ (i) are
obvious.

Corollary 5 If the entries of a 2 × 2 integral matrix A are not (collectively)
coprime then A is 1-clean (i.e. A− I2 is a unit) or A is not exchange.

Corollary 6 Let A be an arbitrary 2 × 2 integral matrix and m ∈ Z, m /∈
{−1, 0, 1}̇. Then mA is 1-clean or not exchange.

Examples. 1)

[

2 0
0 0

]

is I2-clean so exchange but

[

m 0
0 0

]

, for m ≥ 3

are not exchange (this improves Example 4, p. 6).
2) 2I2 is (I2-clean and so) exchange but mI2, for m ≥ 3 are not exchange.

Finally, we can now settle two special cases: the diagonal and the (upper)
triangular 2× 2 integral exchange matrices.

Proposition 7 A diagonal integral matrix A =

[

u 0
0 v

]

is exchange iff A =

±I2 or E11, I2+E22, or else u, v are coprime and of different parity, and if A =
[

2k + 1 0
0 2l

]

then there exist integers m11, m12, m21 such that (1−2km11)[1−

(2k+1)m11] = −2l(2l− 1)m12m21 and k(2k+1)m11+ l(2l− 1)m22 = −(k+ l).

The case A =

[

2l 0
0 2k + 1

]

is recovered by conjugation with

[

0 1
1 0

]

.

Proof. Computation shows that

C = A+M(A−A2) =

[

u[1 + (1− u)m11] v(1 − v)m12

u(1− u)m21 v[1 + (1− v)m22]

]

and so Tr(C) = u[1 + (1− u)m11] + v[1 + (1− v)m22] and det(C) = uv[1+ (1−
u)m11 + (1− v)m22 + (1− u)(1− v) det(M)].

If both u, v are even, A is not exchange by Corollary 5.
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If both u, v are odd, A is not exchange by Proposition 3, excepting the

units ±I2. Since

[

u 0
0 v

]

is conjugate to

[

v 0
0 u

]

by

[

0 1
1 0

]

(the ex-

change property is invariant to conjugations), in the remaining case, using again

Corollary 5, we may suppose A =

[

2k + 1 0
0 2l

]

has coprime entries, that is,

gcd(2k + 1, 2l) = 1. In order to get a characterization we need Theorem 2.
Since b = c = 0, we also have β = γ = 0 and we can use case (i). With

the corresponding notations, u := a + t, v := −a, t = u + v, α = u(1 − u) and
δ = v(1−v). Then the Diophantine equations become 1−u−v = u(1−u)m11+
v(1− v)m22 and u(1−u)[1+ (1− u)m11](1−um11) = u(1− u)v(1− v)m12m21.

Since the case we deal with has odd u and even v, we can discard u = 0. For
u = 1 (the equality holds for any m11,m12,m21) the linear equation amounts

to 1 − v = ±1, i.e. v ∈ {0, 2}. These are the matrices E11 and

[

1 0
0 2

]

(e.g.

M = I2 + E22).
So finally the problem is reduced to [1 + (1 − u)m11](1 − um11) = v(1 −

v)m12m21 and, with the above notations (1−2km11)[1−(2k+1)m11] = −2l(2l−
1)m12m21, together with k(2k + 1)m11 + l(2l− 1)m22 = −(k + l).

Examples. 1)

[

7 0
0 4

]

is not exchange. Here the linear equation 21m11+

6m22 = −5 has no solution, because gcd(21; 6) = 3 is not a divisor of 5.

2)

[

7 0
0 2

]

is exchange. Now the linear equation is 21m11 − m22 = −4,

which has solutions. For m11 = 1, we get 30 = −2m12m21 or m12m21 = −15.
Since δm22 = 1 − t − αm11 we obtain m22 = −17. For example, if M =
[

1 −3
5 −17

]

then C =

[

−35 6
−210 36

]

, an idempotent.

3) The matrices Al =

[

4l− 1 0
0 2l

]

, l /∈ {0, 1} are not exchange.

The linear equation k(2k + 1)m11 + l(2l− 1)m22 = −(k + l) becomes (2l −
1)(4l− 1)m11 + l(2l− 1)m22 = −(3l− 1). Since gcd(4l− 1; l) = 1 it follows that
gcd((2l − 1)(4l − 1); (2l − 1)l) = 2l − 1 and this (linear Diophantine) equation
has solutions iff 2l− 1 divides 3l− 1. It is easy to see that this happens only for
l ∈ {0, 1}.

For l = 0, A0 = −E11 is a tripotent, so exchange, and for l = 1, A1 =
[

3 0
0 2

]

. For M =

[

1 1
−1 −1

]

we get C =

[

−3 −2
6 4

]

, an idempotent. So

A1 is exchange.

We just mention that among matrices of form

[

7 0
0 s

]

, these are exchange

for s ∈ {−4, 2, 6, 8, 12, 24} but not exchange for s ∈ {−2, 0, 4, 10, 16, 18, 20, 22}.

Proposition 8 An upper triangular integral matrix A =

[

a+ t b
0 −a

]

, with
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b 6= 0, t 6= 1 is exchange iff a, b, a+ t are (collectively) coprime, 1− t = αm11 +
γm21 + δm22 and

(a+ t+ αm11)(−a+ 1− t− αm11) = (b+ γm11 + δm12)αm21.

Proof. This is Corollary 5, and Theorem 2, (i).

Examples. 1)

[

2 2
0 2

]

. The entries are not coprime, so the matrix is not

exchange over Z.

2)

[

2 3
0 2

]

. The linear equation amounts to 2m11 +9m21 +2m22 = 3 with

solutions m11 = 6+ 9u− v, m21 = −1− 2u, m22 = v (arbitrary elements u, v).
The quadratic equation is (2−2m11)(−1+2m11) = 2(3−9m11−2m12)m21.

For u = −1, v = −2 we get m11 = −1, m21 = 1, m22 = −2 and then m12 = 3 .

Indeed, for M =

[

−1 3
1 −2

]

we get C =

[

4 6
−2 −3

]

, an idempotent. Hence

the matrix is exchange over any ring.

For M =

[

1 −3
0 1

]

, we obtain the trivial idempotent C = 02 (not covered

by the equations above).

4 Application

In [6] we can find the following
Theorem 5.12 Let e be an idempotent in a ring R and a = b + ε with

b ∈ S := eRe, ε ∈ Idem(eRe). Then a is exchange in R iff b is exchange in
eRe (here e = 1− e, the complementary idempotent).

There are two special cases which are related to our research.
1) R = M3(Z) with e = E11 + E22 and e = E33. In this case we identify

S = eRe with M2(Z) and eRe with Z.
2) R = M3(Z) with e = E11 and then e = E22+E33. In this case we identify

S = eRe with Z and eRe with M2(Z).
Using this, we obtain two consequences. We use block representations of

3× 3 matrices (0 denotes a 2-row, or a 2-column).

Corollary 9 Let U ∈ M2(Z) and ε ∈ {0, 1} ⊂ Z. Then A =

[

U 0

0 ε

]

is

exchange in M3(Z) iff U is exchange in M2(Z).

Corollary 10 Let b ∈ Z and E = E2 ∈ M2(Z). Then A =

[

b 0

0 E

]

is

exchange in M3(Z) iff b is exchange in Z iff b ∈ {−1, 0, 1, 2} ⊂ Z.

Therefore, using the results in the previous section we can generate plenty
of not exchange 3× 3 matrices.
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Corollary 11 The following 3 × 3 matrices are not exchange for any n ∈ Z,
n ≥ 2:

(a)

[

U 0

0 ε

]

for U ∈

[

nZ+ 1 nZ
nZ nZ+ 1

]

, det(U) /∈ {±1} and ε ∈ {0, 1},

(b)

[

U 0

0 ε

]

for U ∈ M2(nZ), det(U − I2) /∈ {±1} and ε ∈ {0, 1},

(c)

[

b 0

0 E

]

with any 2× 2 idempotent E and b ∈ Z− {−1, 0, 1, 2}.

Final comment. Among other things, Horia F. Pop wrote a program
which, given a 2 × 2 matrix A, prints all the matrices M such that B = A +
M(A − A2) = B2. In order to avoid a redundant search, the matrices M
are searched incrementally with the nonnegative integer z starting at 0 and
incremented by 1 for as long as it is deemed necessary. For each distinct value of
z, only the matricesM with all elements in the closed interval [−z, z] and having
at least one element of absolute value equal to z are tested. This procedure has
the advantage of splitting the set of all matrices M with integer elements into
distinct subsets, covered one at a time. The program was decisive in proving
some of our results.
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Şt. Univ. Ovidius Constanţa 26 (1) (2018), 69–80.
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