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S.N. Bernstein introduced the interpolation polynomials
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frequently used in approximation theory of continuous functions on a finite
closed interval.
One can search for functions f : R — R such that

Bulf;x] = f(x).

Since B,[f;z] is always a polynomial, f must also be a polynomial. More
precisely, we look for polynomials P which are fixed elements for B, that is

In what follows we prove the following

Theorem 1 The Bernstein polynomial of a polynomial coincides with this
one if and only if the degree of the polynomial is at most one.

We may equivalently state this theorem also as: for the linear and positive
Bernstein operator, the only fized polynomaials are the polynomials of degree
at most one.

Proof. It is well-known that the condition is sufficient. This follows easily

from
n

Bulax + bia] = > (a— +b)Cha'(1 — z)"
wlax + b; x] (an b)Crx'(1 — x)

1=0
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together with the formulas

n

Z Cla'(l—z)" " =1, ZzCﬁsz(l — )" =nx (1).
i=0

1=0

Hence

Bplax + by x] = % na + b1 = azx +b.
n

In order to prove the condition is also necessary, it suffices to prove that a
polynomial
P(z)=ao+ a1z + ... + apa™ (m <n)
is equal to B,[P(z);z] only if ay = a3 = ... = 0.
Notice that the problem would be easily solved if we succeed in finding
type (1) formulas, until

i imCh (1 — x)"
i=0

However, we will prove the condition is necessary, without finding ex-
plicitly values for these expressions, as follows: type (1) formulas are found
starting with the binomial Newton formula

d ' =(p+q)" (2).

=0

In equality (2) take the derivative with respect to p and then multiply by p,
and repeat this operation m times. This way we obtain

n

> G = np(p+q)" T h

1=0

> PO = np(p+q)" P ;
= (3)-

DG = np(pt )" P
i=0

Here P; (i = 1,2, ...,m) denotes a homogeneous polynomial relative to p and
q, of degree i—1. For example P, = 1, P, = np+q, Ps = n*p*+(3n—1)pg+¢>.
|



Lemma 2 The polynomials P; have the form P; = (np)™! + qQ;, where Q;
are degree © — 2 homogeneous polynomials in p and q.

In order to prove this, it suffices to show that, if
Pi=App ™ + A g+ L+ Al (4)

then AY = n'! for every i = 1,2,3, ...
Inspecting more carefully the procedure which gives the formulas (3), we
find the recurrence formula

Pi=(n—i+2)P1+qP1+pp+q)P_, 4).

Replacing P; and P,_; from (4) and identifying the coefficients of p"~!, we

obtain

Al=n—i+2)A7" + (i —2)AT = nA
Since P; = 1 we obtain at once A% = n'~!, and the proof (of the Lemma) is
complete. []
Proof. Continuing the proof of the theorem, notice that taking p = 1,
q¢= —11in (4), we obtain

S; = P(1,-1) = A} — E,

where E; = A, — AL+ ...+ (1) Al=n"1t—(n—1)(n—2)..(n—i+1) >0,
because from (4’) we have S; = (n—i+1)S;_; and so S; = (n—1)(n—2)...(n—
i+1),i— 1 parentheses. Hence E; =n""' — (n—1)(n—2)...(n —i+1) >0,
i=2.3,..,m.

Replacing p by x and ¢ by 1 — x we get the formulas

Yl (1l —x)" " = nxP, = nx
i=0

POl — 2P = nePy = nafne + (1 - 2)Q) )
i=0

Xn: imCiat (1 — )" = naP, =nz[(nz)™ !+ (1 — 2)Qu]
i=0

J

where the polynomials @); are degree ¢ — 2 homogeneous in x and 1 — z.

Finally consider B,[P(z);z] = Bulag + a1z + ... + apnz™;z] = > (ap +
i=0
(11% + ..+ ame—Z)Céxi(l —z)"t =



=ap.1 4+ L.nx + ... + ap.—[(n2)™ + nx(l — x)Qm] =

=g+ a1 + . + @27 + 2(1 — T)n a2 Qo + az L + . .%le].

Asking for B,[P(x);x] = P(x) and denoting K ~#3, the proof is
reduced to (checking) the equality

KyQo + K3Q3 + ... + K,,Qp, =0 (5)

where @Q); = Al T2 ATl — )+ AL —a) R = A - AL+ L+
(=) Az 2+ ... =Ex 2+ ... (i=2,3,...,m).

Identifying with zero the coefficients in (5), let us start with z™~2. Since
this gives K,,E,, = 0 and E,, > 0 we obtain K,, = 0 and the last term in
(5) vanishes. Continuing with 23, we obtain similarly K,, 1 = 0, and step
by step K,,_o = K,,_3 = ... = Ky = 0. Hence a, = a3 = ... = a,, = 0 a the
proof of the theorem is complete. =

By proving this theorem, we found an eigenvalue for the Bernstein oper-
ator

Bulf;x] = Af (6),

namely A = 1, and the corresponding eigenvectors: the degree one polyno-
mials.

A natural problem is to find the spectrum of the Bernstein operator, that
is, all its eigenvalues A, and the corresponding eigenvectors f, respectively,
which satisfy (6).

Again, since B,[P(z); ] is a polynomial, the eigenvectors f must be also
polynomials; so for P(z) = ag+ a1z + ... + a,, 2™, we must study the equality

B,[P(z);z] = A\P(x).
Coming back to the computation above, we have

wr(l=0)Q | ant(l=2)Qm

n nmfl

(1 =MNP(x)+

Il
o

where @Q,, is a degree m — 2 polynomial, Q,, = E,,2™ 2 + ... and E; =
nl—mn-1)Mn-2)..(n—i+1)>0,i=2,3,...m

Therefore a necessary condition for the existence of X is n™ (1 — \)a,, —
amEm =0, or ap,(n™ (1 -\ — E,,) =0.

This way, since E,, > 0, if A > 1 we have a,, = a,,_1 = ... = a2 = 0, and
so there are no eigenvalues A > 1.



The number A =1 — £=r = (1 - 1)(1—2)..(1 — 2-1) is an eigenvalue,
the corresponding eigenvectors being degree m polynomials, depending ho-
mogeneously on a,,.

Since L = 1 — (1 — L)(1 = 2)...(1 — 1), it follows that -2 # 24
whenever i # 7 and so A = 1—7521 are (different) eigenvalues for the Bernstein
operator, the corresponding eigenvectors being degree ¢ polynomials, ¢ =
2,3, ...,m.

ItAN#1- n’?_ﬁ, A#1,1=2,3,...,m then obviously a,, = a,,_1 = ... =
as = a; = ag = 0, the trivial case.

Hence we have proved the following

Corollary 3 The Bernstein operator B,[f;x] (on n nodes) has exactly n
eigenvalues, all in the real interval (0,1], and these are
1 2 m—1
An=1—-=)1——)...(1——), =12,..,n.
(=)= )1 =", m "
To each eigenvalue A, correspond infinitely many eigenvectors, all degree m
polynomials.



