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S.N. Bernstein introduced the interpolation polynomials

Bn[f ; x] =
n

∑

i=0

f(
i

n
)C i

nx
i(1− x)n−i

frequently used in approximation theory of continuous functions on a finite
closed interval.

One can search for functions f : R −→ R such that

Bn[f ; x] = f(x).

Since Bn[f ; x] is always a polynomial, f must also be a polynomial. More
precisely, we look for polynomials P which are fixed elements for Bn, that is

Bn[P (x); x] = P (x).

In what follows we prove the following

Theorem 1 The Bernstein polynomial of a polynomial coincides with this
one if and only if the degree of the polynomial is at most one.

We may equivalently state this theorem also as: for the linear and positive
Bernstein operator, the only fixed polynomials are the polynomials of degree
at most one.
Proof. It is well-known that the condition is sufficient. This follows easily
from

Bn[ax+ b; x] =

n
∑

i=0

(a
i

n
+ b)C i

nx
i(1− x)n−i
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together with the formulas

n
∑

i=0

C i
nx

i(1− x)n−i = 1,
n

∑

i=0

iC i
nx

i(1− x)n−i = nx (1).

Hence
Bn[ax+ b; x] =

a

n
nx+ b.1 = ax+ b.

In order to prove the condition is also necessary, it suffices to prove that a
polynomial

P (x) = a0 + a1x+ ...+ amx
m (m ≤ n)

is equal to Bn[P (x); x] only if a2 = a3 = ... = 0.
Notice that the problem would be easily solved if we succeed in finding

type (1) formulas, until

n
∑

i=0

imC i
nx

i(1− x)n−i.

However, we will prove the condition is necessary, without finding ex-
plicitly values for these expressions, as follows: type (1) formulas are found
starting with the binomial Newton formula

n
∑

i=0

C i
np

iqn−i = (p+ q)n (2).

In equality (2) take the derivative with respect to p and then multiply by p,
and repeat this operation m times. This way we obtain

n
∑

i=0

iC i
np

iqn−i = np(p+ q)n−1P1

n
∑

i=0

i2C i
np

iqn−i = np(p+ q)n−2P2

... .. ...
n
∑

i=0

imC i
np

iqn−i = np(p+ q)n−mPm


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

(3).

Here Pi (i = 1, 2, ..., m) denotes a homogeneous polynomial relative to p and
q, of degree i−1. For example P1 = 1, P2 = np+q, P3 = n2p2+(3n−1)pq+q2.
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Lemma 2 The polynomials Pi have the form Pi = (np)i−1 + qQi, where Qi

are degree i− 2 homogeneous polynomials in p and q.

In order to prove this, it suffices to show that, if

Pi = Ai
1
pi−1 + Ai

2
pi−2q + ... + Ai

iq
i−1 (4)

then Ai
1
= ni−1 for every i = 1, 2, 3, ...

Inspecting more carefully the procedure which gives the formulas (3), we
find the recurrence formula

Pi = (n− i+ 2)Pi−1 + qPi−1 + p(p+ q)P ′

i−1
(4’).

Replacing Pi and Pi−1 from (4) and identifying the coefficients of pi−1, we
obtain

Ai
1
= (n− i+ 2)Ai−1

1
+ (i− 2)Ai−1

1
= nAi−1

1
.

Since P1 = 1 we obtain at once Ai
1
= ni−1, and the proof (of the Lemma) is

complete. �
Proof. Continuing the proof of the theorem, notice that taking p = 1,
q = −1 in (4), we obtain

Si = Pi(1,−1) = Ai
1
− Ei

where Ei = Ai
2
−Ai

3
+ ...+ (−1)iAi

i = ni−1 − (n− 1)(n− 2)...(n− i+1) > 0,
because from (4’) we have Si = (n−i+1)Si−1 and so Si = (n−1)(n−2)...(n−
i+ 1), i− 1 parentheses. Hence Ei = ni−1 − (n− 1)(n− 2)...(n− i+ 1) > 0,
i = 2, 3, ..., m.

Replacing p by x and q by 1− x we get the formulas

n
∑

i=0

iC i
nx

i(1− x)n−i = nxP1 = nx

n
∑

i=0

i2C i
nx

i(1− x)n−i = nxP2 = nx[nx+ (1− x)Q2]

... .. ...
n
∑

i=0

imC i
nx

i(1− x)n−i = nxPm = nx[(nx)m−1 + (1− x)Qm]


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(3’)

where the polynomials Qi are degree i− 2 homogeneous in x and 1− x.

Finally consider Bn[P (x); x] = Bn[a0 + a1x + ... + amx
m; x] =

n
∑

i=0

(a0 +

a1
i
n
+ ... + am

im

nm )C
i
nx

i(1− x)n−i =
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= a0.1 +
a1
n
.nx+ ... + am.

1

nm [(nx)m + nx(1 − x)Qm] =

= a0 + a1x+ ...+ amx
m + x(1− x)n−1[a2Q2 + a3

Q3

n
+ ...amQm

nm−2 ].
Asking for Bn[P (x); x] = P (x) and denoting Ki = ai

ni−2 , the proof is
reduced to (checking) the equality

K2Q2 +K3Q3 + ... +KmQm = 0 (5)

where Qi = Ai
2
xi−2 + Ai

3
xi−3(1 − x) + ... + Ai

i(1 − x)i−2 = [Ai
2
− Ai

3
+ ... +

(−1)iAi
i]x

i−2 + ... = Eix
i−2 + ... (i = 2, 3, ..., m).

Identifying with zero the coefficients in (5), let us start with xm−2. Since
this gives KmEm = 0 and Em > 0 we obtain Km = 0 and the last term in
(5) vanishes. Continuing with xm−3, we obtain similarly Km−1 = 0, and step
by step Km−2 = Km−3 = ... = K2 = 0. Hence a2 = a3 = ... = am = 0 a the
proof of the theorem is complete.

By proving this theorem, we found an eigenvalue for the Bernstein oper-
ator

Bn[f ; x] = λf (6),

namely λ = 1, and the corresponding eigenvectors: the degree one polyno-
mials.

A natural problem is to find the spectrum of the Bernstein operator, that
is, all its eigenvalues λ, and the corresponding eigenvectors f , respectively,
which satisfy (6).

Again, since Bn[P (x); x] is a polynomial, the eigenvectors f must be also
polynomials; so for P (x) = a0+a1x+ ...+amx

m, we must study the equality

Bn[P (x); x] = λP (x).

Coming back to the computation above, we have

(1− λ)P (x) +
a2x(1− x)Q2

n
+ ...+

amx(1− x)Qm

nm−1
≡ 0

where Qm is a degree m − 2 polynomial, Qm = Emx
m−2 + ... and Ei =

ni−1 − (n− 1)(n− 2)...(n− i+ 1) > 0, i = 2, 3, ..., m.
Therefore a necessary condition for the existence of λ is nm−1(1−λ)am−

amEm = 0, or am(n
m−1(1− λ)− Em) = 0.

This way, since Em > 0, if λ ≥ 1 we have am = am−1 = ... = a2 = 0, and
so there are no eigenvalues λ > 1.
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The number λ = 1− Em

nm−1 = (1− 1

n
)(1− 2

n
)...(1 − m−1

n
) is an eigenvalue,

the corresponding eigenvectors being degree m polynomials, depending ho-
mogeneously on am.

Since Ei

ni−1 = 1 − (1 − 1

n
)(1 − 2

n
)...(1 − i−1

n
), it follows that Ei

ni−1 6=
Ej

nj−1

whenever i 6= j and so λ = 1− Ei

ni−1 are (different) eigenvalues for the Bernstein
operator, the corresponding eigenvectors being degree i polynomials, i =
2, 3, ..., m.

If λ 6= 1 − Ei

ni−1 , λ 6= 1, i = 2, 3, ..., m then obviously am = am−1 = ... =
a2 = a1 = a0 = 0, the trivial case.

Hence we have proved the following

Corollary 3 The Bernstein operator Bn[f ; x] (on n nodes) has exactly n

eigenvalues, all in the real interval (0, 1], and these are

λm = (1−
1

n
)(1−

2

n
)...(1−

m− 1

n
), m = 1, 2, ..., n.

To each eigenvalue λm correspond infinitely many eigenvectors, all degree m

polynomials.
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