On S.N. Bernstein polynomials. The spectrum of the operator *

Grigore Călugăreanu

S.N. Bernstein introduced the interpolation polynomials

$$B_n[f;x] = \sum_{i=0}^n f(\frac{i}{n}) C_n^i x^i (1-x)^{n-i}$$

frequently used in approximation theory of continuous functions on a finite closed interval.

One can search for functions $f : \mathbf{R} \longrightarrow \mathbf{R}$ such that

$$B_n[f;x] = f(x).$$

Since $B_n[f;x]$ is always a polynomial, f must also be a polynomial. More precisely, we look for polynomials P which are fixed elements for B_n , that is

$$B_n[P(x);x] = P(x).$$

In what follows we prove the following

Theorem 1 The Bernstein polynomial of a polynomial coincides with this one if and only if the degree of the polynomial is at most one.

We may equivalently state this theorem also as: for the linear and positive Bernstein operator, the only fixed polynomials are the polynomials of degree at most one.

Proof. It is well-known that the condition is *sufficient*. This follows easily from

$$B_n[ax+b;x] = \sum_{i=0}^n (a\frac{i}{n}+b)C_n^i x^i (1-x)^{n-i}$$

 $^{^*}$ English translation 2013

together with the formulas

$$\sum_{i=0}^{n} C_n^i x^i (1-x)^{n-i} = 1, \quad \sum_{i=0}^{n} i C_n^i x^i (1-x)^{n-i} = nx \tag{1}$$

Hence

$$B_n[ax+b;x] = \frac{a}{n}nx+b.1 = ax+b$$

In order to prove the condition is also *necessary*, it suffices to prove that a polynomial

$$P(x) = a_0 + a_1 x + \dots + a_m x^m \quad (m \le n)$$

is equal to $B_n[P(x); x]$ only if $a_2 = a_3 = \dots = 0$.

Notice that the problem would be easily solved if we succeed in finding type (1) formulas, until

$$\sum_{i=0}^{n} i^{m} C_{n}^{i} x^{i} (1-x)^{n-i}.$$

However, we will prove the condition is necessary, without finding explicitly values for these expressions, as follows: type (1) formulas are found starting with the binomial Newton formula

$$\sum_{i=0}^{n} C_{n}^{i} p^{i} q^{n-i} = (p+q)^{n}$$
(2).

In equality (2) take the derivative with respect to p and then multiply by p, and repeat this operation m times. This way we obtain

$$\left.\begin{array}{l} \sum_{i=0}^{n} iC_{n}^{i}p^{i}q^{n-i} &= np(p+q)^{n-1}P_{1} \\ \sum_{i=0}^{n} i^{2}C_{n}^{i}p^{i}q^{n-i} &= np(p+q)^{n-2}P_{2} \\ \dots & \dots & \dots \\ \sum_{i=0}^{n} i^{m}C_{n}^{i}p^{i}q^{n-i} &= np(p+q)^{n-m}P_{m} \end{array}\right\}$$
(3).

Here P_i (i = 1, 2, ..., m) denotes a homogeneous polynomial relative to p and q, of degree i-1. For example $P_1 = 1$, $P_2 = np+q$, $P_3 = n^2p^2 + (3n-1)pq+q^2$.

Lemma 2 The polynomials P_i have the form $P_i = (np)^{i-1} + qQ_i$, where Q_i are degree i-2 homogeneous polynomials in p and q.

In order to prove this, it suffices to show that, if

$$P_i = A_1^i p^{i-1} + A_2^i p^{i-2} q + \dots + A_i^i q^{i-1}$$
(4)

then $A_1^i = n^{i-1}$ for every i = 1, 2, 3, ...

Inspecting more carefully the procedure which gives the formulas (3), we find the recurrence formula

$$P_{i} = (n - i + 2)P_{i-1} + qP_{i-1} + p(p+q)P'_{i-1}$$
 (4').

Replacing P_i and P_{i-1} from (4) and identifying the coefficients of p^{i-1} , we obtain

$$A_1^i = (n - i + 2)A_1^{i-1} + (i - 2)A_1^{i-1} = nA_1^{i-1}$$

Since $P_1 = 1$ we obtain at once $A_1^i = n^{i-1}$, and the proof (of the Lemma) is complete. \Box

Proof. Continuing the proof of the theorem, notice that taking p = 1, q = -1 in (4), we obtain

$$S_i = P_i(1, -1) = A_1^i - E_i$$

where $E_i = A_2^i - A_3^i + \ldots + (-1)^i A_i^i = n^{i-1} - (n-1)(n-2)\dots(n-i+1) > 0$, because from (4') we have $S_i = (n-i+1)S_{i-1}$ and so $S_i = (n-1)(n-2)\dots(n-i+1)$, i-1 parentheses. Hence $E_i = n^{i-1} - (n-1)(n-2)\dots(n-i+1) > 0$, $i = 2, 3, \dots, m$.

Replacing p by x and q by 1 - x we get the formulas

$$\begin{bmatrix}
\sum_{i=0}^{n} iC_{n}^{i}x^{i}(1-x)^{n-i} &= nxP_{1} = nx \\
\sum_{i=0}^{n} i^{2}C_{n}^{i}x^{i}(1-x)^{n-i} &= nxP_{2} = nx[nx+(1-x)Q_{2}] \\
\dots & \dots & \dots \\
\sum_{i=0}^{n} i^{m}C_{n}^{i}x^{i}(1-x)^{n-i} &= nxP_{m} = nx[(nx)^{m-1}+(1-x)Q_{m}]
\end{bmatrix}$$
(3')

where the polynomials Q_i are degree i - 2 homogeneous in x and 1 - x.

Finally consider $B_n[P(x);x] = B_n[a_0 + a_1x + \dots + a_mx^m;x] = \sum_{i=0}^n (a_0 + a_1\frac{i}{n} + \dots + a_m\frac{i^m}{n^m})C_n^i x^i (1-x)^{n-i} =$

 $= a_0 \cdot 1 + \frac{a_1}{n} \cdot nx + \dots + a_m \cdot \frac{1}{n^m} [(nx)^m + nx(1-x)Q_m] =$

 $= a_0 + a_1 x + \dots + a_m x^m + x(1-x)n^{-1}[a_2Q_2 + a_3\frac{Q_3}{n} + \dots \frac{a_mQ_m}{n^{m-2}}].$ Asking for $B_n[P(x); x] = P(x)$ and denoting $K_i = \frac{a_i}{n^{i-2}}$, the proof is reduced to (checking) the equality

$$K_2Q_2 + K_3Q_3 + \dots + K_mQ_m = 0 (5)$$

where $Q_i = A_2^i x^{i-2} + A_3^i x^{i-3} (1-x) + \dots + A_i^i (1-x)^{i-2} = [A_2^i - A_3^i + \dots + A_i^i (1-x)^{i-2}]$ $(-1)^{i}A_{i}^{i}x^{i-2} + \dots = E_{i}x^{i-2} + \dots \quad (i = 2, 3, \dots, m).$

Identifying with zero the coefficients in (5), let us start with x^{m-2} . Since this gives $K_m E_m = 0$ and $E_m > 0$ we obtain $K_m = 0$ and the last term in (5) vanishes. Continuing with x^{m-3} , we obtain similarly $K_{m-1} = 0$, and step by step $K_{m-2} = K_{m-3} = \dots = K_2 = 0$. Hence $a_2 = a_3 = \dots = a_m = 0$ a the proof of the theorem is complete. \blacksquare

By proving this theorem, we found an eigenvalue for the Bernstein operator

$$B_n[f;x] = \lambda f \quad (6),$$

namely $\lambda = 1$, and the corresponding eigenvectors: the degree one polynomials.

A natural problem is to find the spectrum of the Bernstein operator, that is, all its eigenvalues λ , and the corresponding eigenvectors f, respectively, which satisfy (6).

Again, since $B_n[P(x); x]$ is a polynomial, the eigenvectors f must be also polynomials; so for $P(x) = a_0 + a_1 x + ... + a_m x^m$, we must study the equality

$$B_n[P(x);x] = \lambda P(x).$$

Coming back to the computation above, we have

$$(1-\lambda)P(x) + \frac{a_2x(1-x)Q_2}{n} + \dots + \frac{a_mx(1-x)Q_m}{n^{m-1}} \equiv 0$$

where Q_m is a degree m-2 polynomial, $Q_m = E_m x^{m-2} + \dots$ and $E_i =$ $n^{i-1} - (n-1)(n-2)...(n-i+1) > 0, i = 2, 3, ..., m.$

Therefore a necessary condition for the existence of λ is $n^{m-1}(1-\lambda)a_m$ – $a_m E_m = 0$, or $a_m (n^{m-1}(1 - \lambda) - E_m) = 0$.

This way, since $E_m > 0$, if $\lambda \ge 1$ we have $a_m = a_{m-1} = \dots = a_2 = 0$, and so there are no eigenvalues $\lambda > 1$.

The number $\lambda = 1 - \frac{E_m}{n^{m-1}} = (1 - \frac{1}{n})(1 - \frac{2}{n})...(1 - \frac{m-1}{n})$ is an eigenvalue, the corresponding eigenvectors being degree m polynomials, depending homogeneously on a_m .

Since $\frac{E_i}{n^{i-1}} = 1 - (1 - \frac{1}{n})(1 - \frac{2}{n})...(1 - \frac{i-1}{n})$, it follows that $\frac{E_i}{n^{i-1}} \neq \frac{E_j}{n^{j-1}}$ whenever $i \neq j$ and so $\lambda = 1 - \frac{E_i}{n^{i-1}}$ are (different) eigenvalues for the Bernstein operator, the corresponding eigenvectors being degree *i* polynomials, i = 2, 3, ..., m.

If $\lambda \neq 1 - \frac{E_i}{n^{i-1}}$, $\lambda \neq 1$, i = 2, 3, ..., m then obviously $a_m = a_{m-1} = ... = a_2 = a_1 = a_0 = 0$, the trivial case.

Hence we have proved the following

Corollary 3 The Bernstein operator $B_n[f;x]$ (on n nodes) has exactly n eigenvalues, all in the real interval (0, 1], and these are

$$\lambda_m = (1 - \frac{1}{n})(1 - \frac{2}{n})...(1 - \frac{m-1}{n}), \ m = 1, 2, ..., n.$$

To each eigenvalue λ_m correspond infinitely many eigenvectors, all degree m polynomials.