On S.N. Bernstein polynomials. The spectrum of the operator *

Grigore Călugăreanu

S.N. Bernstein introduced the interpolation polynomials

$$
B_{n}[f ; x]=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) C_{n}^{i} x^{i}(1-x)^{n-i}
$$

frequently used in approximation theory of continuous functions on a finite closed interval.

One can search for functions $f: \mathbf{R} \longrightarrow \mathbf{R}$ such that

$$
B_{n}[f ; x]=f(x) .
$$

Since $B_{n}[f ; x]$ is always a polynomial, f must also be a polynomial. More precisely, we look for polynomials P which are fixed elements for B_{n}, that is

$$
B_{n}[P(x) ; x]=P(x) .
$$

In what follows we prove the following
Theorem 1 The Bernstein polynomial of a polynomial coincides with this one if and only if the degree of the polynomial is at most one.

We may equivalently state this theorem also as: for the linear and positive Bernstein operator, the only fixed polynomials are the polynomials of degree at most one.
Proof. It is well-known that the condition is sufficient. This follows easily from

$$
B_{n}[a x+b ; x]=\sum_{i=0}^{n}\left(a \frac{i}{n}+b\right) C_{n}^{i} x^{i}(1-x)^{n-i}
$$

[^0]together with the formulas
\[

$$
\begin{equation*}
\sum_{i=0}^{n} C_{n}^{i} x^{i}(1-x)^{n-i}=1, \quad \sum_{i=0}^{n} i C_{n}^{i} x^{i}(1-x)^{n-i}=n x \tag{1}
\end{equation*}
$$

\]

Hence

$$
B_{n}[a x+b ; x]=\frac{a}{n} n x+b .1=a x+b .
$$

In order to prove the condition is also necessary, it suffices to prove that a polynomial

$$
P(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m} \quad(m \leq n)
$$

is equal to $B_{n}[P(x) ; x]$ only if $a_{2}=a_{3}=\ldots=0$.
Notice that the problem would be easily solved if we succeed in finding type (1) formulas, until

$$
\sum_{i=0}^{n} i^{m} C_{n}^{i} x^{i}(1-x)^{n-i}
$$

However, we will prove the condition is necessary, without finding explicitly values for these expressions, as follows: type (1) formulas are found starting with the binomial Newton formula

$$
\begin{equation*}
\sum_{i=0}^{n} C_{n}^{i} p^{i} q^{n-i}=(p+q)^{n} \tag{2}
\end{equation*}
$$

In equality (2) take the derivative with respect to p and then multiply by p, and repeat this operation m times. This way we obtain

$$
\left.\begin{array}{ccc}
\sum_{i=0}^{n} i C_{n}^{i} p^{i} q^{n-i} & = & n p(p+q)^{n-1} P_{1} \tag{3}\\
\sum_{i=0}^{n} i^{2} C_{n}^{i} p^{i} q^{n-i} & = & n p(p+q)^{n-2} P_{2} \\
\ldots & \cdots & \ldots \\
\sum_{i=0}^{n} i^{m} C_{n}^{i} p^{i} q^{n-i} & = & n p(p+q)^{n-m} P_{m}
\end{array}\right\}
$$

Here $P_{i}(i=1,2, \ldots, m)$ denotes a homogeneous polynomial relative to p and q, of degree $i-1$. For example $P_{1}=1, P_{2}=n p+q, P_{3}=n^{2} p^{2}+(3 n-1) p q+q^{2}$.

Lemma 2 The polynomials P_{i} have the form $P_{i}=(n p)^{i-1}+q Q_{i}$, where Q_{i} are degree $i-2$ homogeneous polynomials in p and q.

In order to prove this, it suffices to show that, if

$$
\begin{equation*}
P_{i}=A_{1}^{i} p^{i-1}+A_{2}^{i} p^{i-2} q+\ldots+A_{i}^{i} q^{i-1} \tag{4}
\end{equation*}
$$

then $A_{1}^{i}=n^{i-1}$ for every $i=1,2,3, \ldots$
Inspecting more carefully the procedure which gives the formulas (3), we find the recurrence formula

$$
P_{i}=(n-i+2) P_{i-1}+q P_{i-1}+p(p+q) P_{i-1}^{\prime}
$$

Replacing P_{i} and P_{i-1} from (4) and identifying the coefficients of p^{i-1}, we obtain

$$
A_{1}^{i}=(n-i+2) A_{1}^{i-1}+(i-2) A_{1}^{i-1}=n A_{1}^{i-1} .
$$

Since $P_{1}=1$ we obtain at once $A_{1}^{i}=n^{i-1}$, and the proof (of the Lemma) is complete.
Proof. Continuing the proof of the theorem, notice that taking $p=1$, $q=-1$ in (4), we obtain

$$
S_{i}=P_{i}(1,-1)=A_{1}^{i}-E_{i}
$$

where $E_{i}=A_{2}^{i}-A_{3}^{i}+\ldots+(-1)^{i} A_{i}^{i}=n^{i-1}-(n-1)(n-2) \ldots(n-i+1)>0$, because from (4') we have $S_{i}=(n-i+1) S_{i-1}$ and so $S_{i}=(n-1)(n-2) \ldots(n-$ $i+1), i-1$ parentheses. Hence $E_{i}=n^{i-1}-(n-1)(n-2) \ldots(n-i+1)>0$, $i=2,3, \ldots, m$.

Replacing p by x and q by $1-x$ we get the formulas

$$
\left.\begin{array}{ccc}
\sum_{i=0}^{n} i C_{n}^{i} x^{i}(1-x)^{n-i} & = & n x P_{1}=n x \tag{3'}\\
\sum_{i=0}^{n} i^{2} C_{n}^{i} x^{i}(1-x)^{n-i} & = & n x P_{2}=n x\left[n x+(1-x) Q_{2}\right] \\
\ldots & \cdots & \ldots \\
\sum_{i=0}^{n} i^{m} C_{n}^{i} x^{i}(1-x)^{n-i} & = & n x P_{m}=n x\left[(n x)^{m-1}+(1-x) Q_{m}\right]
\end{array}\right\}
$$

where the polynomials Q_{i} are degree $i-2$ homogeneous in x and $1-x$.
Finally consider $B_{n}[P(x) ; x]=B_{n}\left[a_{0}+a_{1} x+\ldots+a_{m} x^{m} ; x\right]=\sum_{i=0}^{n}\left(a_{0}+\right.$ $\left.a_{1} \frac{i}{n}+\ldots+a_{m} \frac{i^{m}}{n^{m}}\right) C_{n}^{i} x^{i}(1-x)^{n-i}=$

$$
\begin{aligned}
& =a_{0} \cdot 1+\frac{a_{1}}{n} \cdot n x+\ldots+a_{m} \cdot \frac{1}{n^{m}}\left[(n x)^{m}+n x(1-x) Q_{m}\right]= \\
& =a_{0}+a_{1} x+\ldots+a_{m} x^{m}+x(1-x) n^{-1}\left[a_{2} Q_{2}+a_{3} \frac{Q_{3}}{n}+\ldots \frac{a_{m} Q_{m}}{n^{m-2}}\right]
\end{aligned}
$$

Asking for $B_{n}[P(x) ; x]=P(x)$ and denoting $K_{i}=\frac{a_{i}}{n^{i-2}}$, the proof is reduced to (checking) the equality

$$
\begin{equation*}
K_{2} Q_{2}+K_{3} Q_{3}+\ldots+K_{m} Q_{m}=0 \tag{5}
\end{equation*}
$$

where $Q_{i}=A_{2}^{i} x^{i-2}+A_{3}^{i} x^{i-3}(1-x)+\ldots+A_{i}^{i}(1-x)^{i-2}=\left[A_{2}^{i}-A_{3}^{i}+\ldots+\right.$ $\left.(-1)^{i} A_{i}^{i}\right] x^{i-2}+\ldots=E_{i} x^{i-2}+\ldots(i=2,3, \ldots, m)$.

Identifying with zero the coefficients in (5), let us start with x^{m-2}. Since this gives $K_{m} E_{m}=0$ and $E_{m}>0$ we obtain $K_{m}=0$ and the last term in (5) vanishes. Continuing with x^{m-3}, we obtain similarly $K_{m-1}=0$, and step by step $K_{m-2}=K_{m-3}=\ldots=K_{2}=0$. Hence $a_{2}=a_{3}=\ldots=a_{m}=0$ a the proof of the theorem is complete.

By proving this theorem, we found an eigenvalue for the Bernstein operator

$$
B_{n}[f ; x]=\lambda f
$$

namely $\lambda=1$, and the corresponding eigenvectors: the degree one polynomials.

A natural problem is to find the spectrum of the Bernstein operator, that is, all its eigenvalues λ, and the corresponding eigenvectors f, respectively, which satisfy (6).

Again, since $B_{n}[P(x) ; x]$ is a polynomial, the eigenvectors f must be also polynomials; so for $P(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$, we must study the equality

$$
B_{n}[P(x) ; x]=\lambda P(x)
$$

Coming back to the computation above, we have

$$
(1-\lambda) P(x)+\frac{a_{2} x(1-x) Q_{2}}{n}+\ldots+\frac{a_{m} x(1-x) Q_{m}}{n^{m-1}} \equiv 0
$$

where Q_{m} is a degree $m-2$ polynomial, $Q_{m}=E_{m} x^{m-2}+\ldots$ and $E_{i}=$ $n^{i-1}-(n-1)(n-2) \ldots(n-i+1)>0, i=2,3, \ldots, m$.

Therefore a necessary condition for the existence of λ is $n^{m-1}(1-\lambda) a_{m}-$ $a_{m} E_{m}=0$, or $a_{m}\left(n^{m-1}(1-\lambda)-E_{m}\right)=0$ 。

This way, since $E_{m}>0$, if $\lambda \geq 1$ we have $a_{m}=a_{m-1}=\ldots=a_{2}=0$, and so there are no eigenvalues $\lambda>1$.

The number $\lambda=1-\frac{E_{m}}{n^{m-1}}=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right)$ is an eigenvalue, the corresponding eigenvectors being degree m polynomials, depending homogeneously on a_{m}.

Since $\frac{E_{i}}{n^{i-1}}=1-\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{i-1}{n}\right)$, it follows that $\frac{E_{i}}{n^{i-1}} \neq \frac{E_{j}}{n^{j}-1}$ whenever $i \neq j$ and so $\lambda=1-\frac{E_{i}}{n^{i-1}}$ are (different) eigenvalues for the Bernstein operator, the corresponding eigenvectors being degree i polynomials, $i=$ $2,3, \ldots, m$.

If $\lambda \neq 1-\frac{E_{i}}{n^{i-1}}, \lambda \neq 1, i=2,3, \ldots, m$ then obviously $a_{m}=a_{m-1}=\ldots=$ $a_{2}=a_{1}=a_{0}=0$, the trivial case.

Hence we have proved the following
Corollary 3 The Bernstein operator $B_{n}[f ; x]$ (on n nodes) has exactly n eigenvalues, all in the real interval (0,1], and these are

$$
\lambda_{m}=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{m-1}{n}\right), \quad m=1,2, \ldots, n .
$$

To each eigenvalue λ_{m} correspond infinitely many eigenvectors, all degree m polynomials.

[^0]: *English translation 2013

