A VARIETY OF ASSOCIATIVE STRUCTURE WITH ONE-SIDED ZERO ELEMENTS IN AUTONOMOUS CATEGORIES

BY

GRIGORE G. CĂLUGĂREANU

(Cluj)

Using the "lifting" of a well-known bijection in Ens and the definition of the multiplicative systems in an autonomous category, a variety in the Frölich sense is found. The variety contains multiplicative systems "lifted" over associative structures of one-sided zero elements.

1. Introduction. It is a well known fact that in the category Ens, the following bijection holds

$$\alpha_{AB}$$
: Hom $(A, B) \cong {}^{\mathbf{X}}_{\alpha \in A} B$

where A, B are arbitrary sets and α_{AB} $(f) = \{f(\alpha)\}_{\alpha \in A}$. In categories with richer structure, like Ab or Mod_R , α remains only an injective homomorphism, i.e. a monomorphism in these categories.

Let a be a closed category in the sense of (2). We shall denote by (A, B) the values of the lifted hom-functor hom $\alpha: \alpha^{op} \times \alpha \to \alpha$, and by |A| the value of the set-valued functor of subjacency $|-|: o \to Ens|$ on objects A, B in a.

In (4), if A, B are objects in a and $a \in |A|$, the "evaluation in a"-morphism is constructed as follows

$$ev_{\alpha}\colon (A,\,B) o B$$

is the image of a by the subjacent map of the a-morphism

corresponding to the identity of (A, B) in the bijection

$$|((A, B), (A, B))| \cong |(A, ((A, B), B))|.$$

REV. ROUM. MATH. PURES ET APPL. TOME XVII, No. 9. P. 1317-1322, BUCAREST, 1972

One can easily show that for every $f \in |(A, B)|$ we have

$$|ev_{\alpha}|$$
 $(f) = |f|$ (α) .

If a has products, the family $\{ev_{\alpha}: (A, B) \to A\}_{\alpha \in |A|}$ induces by

factorization a morphism $\alpha_{AB}:(A,B)\to\prod_{\alpha\in |A|}B$.

Assuming that the functor of subjacency is faithful and preserves products (assumptions that hold in most of the concrete categories) we can trivially show that a is monic and we have

$$|\alpha|(f) = \{|f|(\alpha)\}_{\alpha \in |A|}.$$

The commutativity of the two following diagrams shows that α_{AB} is natural in his both arguments:

The commutativity holds because equalities like

$$ev_{\alpha}^{\mathbf{C}} \cdot (1,f) = f \cdot ev_{\alpha}^{\mathbf{B}}, \ ev_{\alpha} \cdot (g,1) = ev_{|g|}(\alpha)$$

for any $f: B \to C$ and $g: A_1 \to A_2$ are easily established at the subjacent level (this is sufficient because of the faithfulness of |-|).

2. DEFINITIONS. Let a be a closed category. We define, as in (1) the category \mathcal{M} of multiplicative systems in a; that is, the objects of \mathcal{M} are pairs (x, π) where $x \in a$ and $\pi : x \to (x, x)$ is an arrow of v, and the morphisms are the arrows $f: (x, \pi) \to (x', \pi')$ which are just arrows $f: x \to x'$ in a such that the following pentagon commutes.

It is easy to see that every multiplicative system defines an operation on |x| in a trivial way: for α , $\delta \in |x|$, $\alpha \circ \delta = ||\pi|(\alpha)|(\delta)$.

First, we shall show that if v is a symmetric monoidal closed category

with products, then M has products.

Let $\{(x_i, \pi_i)\}_{i \in I}$ be a family of multiplicative systems. Denoting by P the product in $u \prod x_i$, we are looking for a morphism, $\pi: P \to (P, P)$ induced by the family $\{\pi_i\}$.

We consider the family

$$\left\{P \xrightarrow{pr_i} x_i \xrightarrow{\pi_i} (x_i, x_i) \xrightarrow{(pr_i, 1)} (P, x_i)\right\}_{i \in I}.$$

a being symmetric monoidal closed, the functor $v(P, -): v \to v$ has a left (strong) adjoint namely $-\otimes P: v \to v$, and therefore preserve limits and in particular, products.

It follows that $\prod_{i\in I}(P, x_i)\cong (P, \prod_i x_i)=(P, P)$, and so the above family gives by factorization the morphism $\pi:P\to (P,P)$ we have been looking for. In this way, $pr_i:(P,\pi)\to (x_i,\pi_i)$ is a morphism in \mathcal{M} .

Remark. The multiplicative system (P, π) is canonic enough; in fact, one can show that the "operation" π is induced by $\{\pi_i\}$ "componentwise".

Recall from (3) that a variety \mathcal{B} in a category \mathcal{Q} is a full subcategory of \mathcal{Q} , satisfying the following axioms:

- (i) If $f: A \to B$ is an epimorphism and $A \in \mathcal{B}$ then $B \in \mathcal{B}$
- (ii) If $f: A \to B$ is an monomorphism and $B \in \mathcal{B}$ then $A \in \mathcal{B}$
- (iii) If $(A_i)_{i\in I}$ is an indexed set of objects, $(A_i)\subset \mathcal{B}$ then

$$\Pi A_i \in \mathcal{B}$$
.

3. The variety. Let M be the full subcategory of M whose objects are multiplicative systems (x, π_x) where π_x is such, that the two morphisms

$$\frac{\Delta_{x}}{x} \xrightarrow[\pi_{x}]{} (x, x) \xrightarrow[\alpha_{xx}]{} \prod_{x} x$$

are equal. $\Delta_x: x \to \prod x$ is the diagonal morphism induced by the family $\{id_x: x \to x\}_{|x|}$ and α_{xx} is the natural monomorphism defined in the first section.

Remark. The notation π_{∞} is legitimate: if such a morphism exists,

it is unique (a monic).

Remark. $|\pi_{\infty}|$ defines on |x| an operation such that for every

 $i, j \in |x|$ we have $i \circ j = ||\pi_x||(i)|(j) = i$.

Thus, all the elements of |x| are all left-zero or all right-zero elements for the operation $|\pi_x|$. It is easy to see that this operation is associative, but not commutative.

THEOREM. Let M be the category of multiplicative systems on an autonomous category a whose subjacent functor preserves products. The full

subcategory M is a variety in M. *Proof.* (i) Let $f:(x,\pi_x)\to (x',\pi')$ be an epimorphism in \mathcal{M} . Consider

the diagram

Diagram 4

where $i \in |x|$.

Since α is natural, and f is a morphism in \mathcal{M} , the pentagon, the three squares and the triangle are commutative. The two top lines are equal by the definition of π_{∞} . Hence, the bottom lines are also equal since f is surjective (and so $\{p_{|f|(i)}^{x'}\}_{i\in[x]}$ are all the projections from Π x') and is an epimorphism, and we have $\Delta_{x'} = \alpha_{x'x'}\pi'$. Thus $\pi' = \pi_{x'}$ and $(x', \pi') \in \mathcal{M}$.

(ii) Now, let $f:(x,\pi)\to (x',\pi_{x'})$ be a monomorphism in \mathcal{M} . Consider the similar diagram

Diagram 5

where $i \in |x|$.

The subdiagrams are commutative by similar arguments. The bottom lines are equal by the definition of $\pi_{\omega'}$. Hence the top lines are equal, i.e. $\Delta_x = \alpha_{\infty} \pi$, since f is monic and $\{p_i^x\}_{i \in [\pi]}$ are all the projections from the product $\prod_{|x|} x$. Thus $\pi = \pi_{\infty}$ and $(x, \pi) \in \widetilde{\mathcal{M}}$.

(iii) We finally consider the diagram

Diagram 6

where $(x_i, \pi_{x_i}) \in \mathcal{M}$, P has the projections p_i and $s \in |P|$. The top lines are equal and as the subdiagrams are again commutative, the bottom lines are equal, i.e. $\Delta_P = \alpha_{PP} \pi$, since $\{p_i\}_{i \in I}$ are all the projections of P and $\{\text{proj}_s^P\}_{s \in I}$, $s \in |P|$ are all the projections of $\prod_{P} P$. Thus $\pi = \pi_P$ and

 $(P, \pi) \in \widetilde{\mathcal{M}}, \text{ qed.}$

Remark. If a is complete, then \mathcal{M} is easily seen to be complete because a $\lim_{i \in I} x_i$, —) preserves limits) and one can give an analogous proof to

show that $\widetilde{\mathcal{M}}$ is a complete subcategory of \mathcal{M} . Without considering the injective anyelopes, $\widetilde{\mathcal{M}}$ could be also a monosubcategory (5).

Received December 15, 1971

University of Cluj Cluj, Romania

REFERENCES

- 1. Dubuc Eduardo, Street Ross, Dinatural Transformations, Reports on the Midwest Category Seminar IV, Lecture Notes 137, p. 126-137, Springer-Verlag, 1970.
- EILENBERG SAMUEL, KELLY G. MAX, Closed Categories, Proc. Conf. Categorical Algebra, La Jolla, 1965, p. 421-562, Springer-Verlag Berlin, Heidelberg, New York, 1966.
- 3. FRÖLICH A., Baer-invariants of algebras, Trans. Amer. Math. Soc., 1963, 109, 221-224.
- 4. Linton F. E. J., Autonomous categories and duality of functors, Journal of Algebra, 1965, 2, 315-349.
- 5. MITCHELL BARRY, Theory of categories, Academic Press, New York, London, 1965.