ABELIAN GROUPS WITH PSEUDOCOMPLEMENTED LATTICE OF SUBGROUPS

GRIGORE G. CĂLUGĂREANU*

Received: October 13, 1986

ABSTRACT. — In this paper we prove that for the lattice of the subgroups of an abelian group pseudocomplementation and distributivity are equivalent. We also characterize abelian groups which have a Stone lattice or a Heyting algebra of subgroups.

Let L be a lattice with zero and $0 \neq a \in L$. If $C_a = \{x \in L | a \land x = 0\}$, the greatest element of C_a (if it exists) is called the pseudocomplement of a in L. (Note that the "pseudocomplement" is differently used for an unspecified maximal element of C_a). If every element in L has a pseudocomplement, L is called a pseudocomplemented lattice.

We first recall the following known facts:

(A) Every distributive compactly generated lattice is pseudocomplemented. (B) If A is an abelian group, the lattice L(A) of all the subgroups of A is compactly generated.

1. LEMMA. Let P be an inductive poset. The following conditions are equivalent: (i) P has a unique maximal element; (ii) P has a greatest element.

Indeed, if m is the unique maximal element of P and $a \in P$ then $P_a = \{x \in P | a \le x\}$ is inductive and has (by Zorn's lemma) maximal elements which are also maximal in P. So $a \le m$. The converse is obvious.

2. COROLLARY. Let L be an upper continuous lattice. The following conditions are equivalent: (i) C_a has a unique maximal element; (ii) C_a has a greatest element.

Indeed, in an upper continuous lattice, C_a is inductive. The key result for our paper, from [5] is the following:

(C) Let $B \neq 0$ be a subgroup of an abelian group A. There is a unique B-high subgroup if and only if A/B is a torsion group and for each prime p either B[p] = A[p] or B[p] = 0 holds.

3. COROLLARY. Let $B \neq 0$ be a subgroup of an abelian group A. The following conditions are equivalent: (i) B has a pseudocomplement in L(A); (ii) there is only one B-high subgroup in A; (iii) A/B is a torsion group and for every prime p either B[p] = A[p] or B[p] = 0 holds.

4. PROPOSITION. For an abelian group A the following conditions are equivalent: (a) every nontrivial quotient group of A is a torsion group; (b) A is either a torsion group or a torsion-free group of rank 1.

^{*} University of Cluj-Napoca, Faculty of Mathematics and Physics, 3400 Chuj-Napoca, Romania

Proof. Clearly no mixed group has the property (a): if $0 \neq T(A) \neq A$ then A/T(A) is torsion-free. Obviously every torsion group has the property (a). Now, if A is torsion-free of rank $r_0(A) \ge 2$ and $0 \ne a \in A$ then $r_0(A/\langle a \rangle) \ge 1$ so that $A/\langle a \rangle$ is not torsion. Finally, if A is torsion-free of rank 1, A has the property (a), as every rational group has it.

5. PROPOSITION. For a torsion group A the following conditions are equivalent: (c) for each subgroup B of A and each p prime either B[p] = A[p] or B[p] = 0 holds; (d) A is a direct sum of cocyclic groups corresponding to

different primes.

Proof. We can obviously reduce our problem to p-groups. But B[p] = 0 holds if and only if B=0 so that only the case B[p]=A[p] needs care. If A is a p-group such that B[p] = A[p] holds for each subgroup $B \neq 0$ of A then A[p] = S(A) (the socle) is contained in every nonzero subgroup B of A. In this case, having a smallest nenzero subgroup, A is cocyclic. The converse is obvious.

6. CORROLARY. If A is an abelian group, the lattice L(A) is pseudocomplemented if and only if A is either a direct sum of cocyclic groups corresponding to different primes or a torsion-free group of rank 1.

Proof. Using 3, 4 and 5 we only need to observe that (c) is trivially true for

torsion-free groups.

7. THEOREM. For an abelian group A the following conditions are equivalent: (i) L(A) is a distributive lattice; (ii) L(A) is a pseudocomplemented lattice; (iii) A is a locally cyclic group; (iv) $r_0(A) + \max r_p(A) \leq 1$; (v) A is either a direct sum of cocyclic groups corresponding to different primes or a torsion-free group of rank 1. sample deathborn is and I (i)

Proof. One can use [3, p 86, ex. 5] and [2, p 301, T. 78.2]. The rest is done by

the previous corollary, almomoto lamin am (named a sero X yd) and bu A pseudocomplemented distributive lattice is called a Stone lattice if $a^* \lor a^{**} = 1$, where a^* denotes the pseudocomplement of a in L. If B is a subgroup of A such that A/B is a torsion group, let π be the set of all the primes such that B[p] = 0 holds and B[p] = A[p] holds for $p \notin \pi$. Using proposition 2 and 3 from [5] we have $B^* = \bigoplus_{p \in \pi} (T(A))_p$ and $B^{**} = \bigoplus_{p \notin \pi} (T(A))_p$ so that $B^* + B^{**} = T(A)$. Hence only the torsion groups from 7 have Stone (c) Let $B \neq 0$ be a subgroup of an abelian group 4. The equorgdus to satisfied a subgroup of an abelian group 4.

8. PROPOSITION. For an abelian group A the following conditions are equivalent: (i) L(A) is a Stone lattice; (ii) A is a direct sum of cocyclic groups corresponding to different primes.

A lattice with zero is called a Heyting algebra (or a relative pseudocomplemented lattice) if for every $a, b \in L$ the subset $\{x \in L | a \land x \leq b\}$ has a greatest element denoted a * b.

We finally mention the following characterization [1]: (D) A bounded lattice L is a Heyting algebra if and only if L is distributive and for each

 $b \in L$ the sublattice $1/b = \{x \in L | b \le x\}$ is pseudocomplemented.

The pseudocomplementation and the distributivity of the lattice of all the subgroups of an abelian group being equivalent it immediately follows that

L(A) is a Heyting algebra if and only if L(A) is distributive (any sublattice of a distributive lattice is distributive too). ZAM GVA HOLD JADITUS

Remark. The characterization of the class of all abelian groups which have the lattice L(A) a Boole algebra is an easy consequence of 8 (cf. 2, p. 302, Cor. 78.5). V. URECHE"

REFERENCES

- 1. Balbes R., Dwinger P., Distributive Lattices, Univ. Missouri Press, Columbia, Miss. 1974.
- 2. Fuchs L., Abelian Groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958.
- 3. Fuchs L., Infinite Abelian Groups, vol. 1, Academic Press 1970.
- 4. Grätzer G., General Lattice Theory, Akademie Verlag, Berlin, 1978.
- 5. Krivonos F. V., On N-high subgroups of abelian groups, Vestnik Mosk. Univ., no. 1, 1975, p. 58-64.

stellar models with the distribution of the density as a power law, having the form

$$\rho = \rho \left(1 - r / R \right), \quad \alpha \geqslant 0, \tag{1}$$

where the notations are the usual ones, was introduced by Huseynov and

2. Main Properties of Relativistic Stepenars. If we introduce the non-dimensional variables (see Ureche, 1980 a), the distribution of the density (1) takes

$$\psi = (1 - \eta/\eta_s)^{\alpha}, \quad \alpha \geqslant 0, \tag{2}$$

$$m(y) = \frac{y_0^2}{(x-2y_0x+3)} f(y),$$
 (3)

$$f(y) = 2 - (1 - y)^{\alpha + 1} [(\alpha + 1)^{2}(\alpha + 2)y^{2} + 2(\alpha + 1)y + 2]. \tag{4}$$

the total mass of the relativistic stellar configuration having the expression

$$m_s \equiv m(1) - \frac{2n_s^2}{(x+1)(x+2)(x+3)}$$
 (5)