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Abstract

Fine elements were defined in [3] for unital rings, as sums of units by
nilpotents. Such a sum is called uniquely fine if it is the only decomposi-
tion u+ t with unit u and nilpotent t. The paper reveals the many facets
of this notion for 2× 2 integral matrices.

1 Introduction

A nonzero element a in a unital ring R is called fine (see [3]) if a = u + t with
a unit u and a nilpotent t. It is called uniquely fine if there is a unique unit
u such that a − u is nilpotent and strongly fine if ut = tu. Accordingly, one
defines fine, uniquely fine and strongly fine rings, respectively.

It was proved in [3] that uniquely fine rings coincide with strongly fine rings
and these are precisely the division rings. Elementwise, a nonzero element is
strongly fine iff it is a unit.

There are uniquely fine elements which are not units and units may not be
uniquely fine.

For example, in M2(F2), a fine ring together with the two element field F2,
all (the 6) nontrivial idempotents are uniquely fine but not units. From the six
units, only the two order 3 units are uniquely fine.

Actually, units are uniquely fine in a unital ring iff the ring is reduced.
Indeed, if R is not reduced and 0 6= t is nilpotent then 1 + t = (1 + t) + 0 is a
unit which has two different fine decompositions. Conversely, if R is reduced,
every fine element is obviously uniquely (and strongly) fine and so, is a unit.

Clearly, if R is not reduced and a unit u commutes with a nonzero nilpotent
t, then u+ t is (strongly fine, so a unit and) not uniquely fine: u+ t = (u+ t)+0
are different fine decompositions.

The aim of this note is to study the uniquely fine 2× 2 integral matrices.
In Section 2 the reduction to similarity classes of fine 2× 2 integral matrices

is described and fine decompositions which use a positive multiple of the matrix
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unit E12 (as special nilpotent) are presented. In the last section, large (infinite)
classes of uniquely fine matrices are found, all whose characteristic polynomial
factors over the integers and examples of units of infinite fine index are given.
Since uniquely fine matrices were not addressed in [3], but several examples of
fine or not fine matrices were given, these are revisited from this point of view.

For a unital ring R, U(R) denotes the set of units, N(R) the set of nilpotent
elements, Mn(R) denotes the ring of all n×n matrices with entries in R, Tr(A)
denotes the trace of the matrix A. By Eij we denote the (so called) matrix unit
with all entries zero excepting the (i, j) entry, which is 1. The zero matrix and
the identity matrix in M2(R) are denoted 02 and I2, respectively.

2 Fine 2× 2 matrices and similarity

Definition. Two 2 × 2 matrices A, B over any unital ring R, are similar

(or conjugate) if there is an invertible matrix U such that B = U−1AU . Since
similarity is obviously an equivalence relation, a partition ofM2(R) corresponds
to it. The subsets in this partition are called similarity classes.

If A is nilpotent (or a unit) and B is similar to A then B is also nilpotent
(respectively a unit). This similarity invariance clearly extends to fine matrices
and it also restricts to uniquely or strongly fine matrices, respectively. Rephras-
ing, the notions of fine, uniquely fine and strongly fine are similarity invariants.
So is the fine index (a matrix has fine index n if it has exactly n different fine
decompositions).

In the sequel, R = Z, that is, we deal only with 2× 2 integral matrices. To
determine all fine matrices actually means to find all the similarity classes of
fine matrices. In doing so, it is natural to fix each similarity class by a special
representative. In this paper, this will be done into two different ways.

The first has already been done by Behn and Van der Merwe in [2] where
an algorithm is presented, which, given a 2× 2 matrix, finds a canonical repre-
sentative (called reduced) in its similarity class.

The second consists in fixing the similarity classes by a representative which
uses a special nilpotent namely, a positive multiple of E12.

As for the first, recall the following

Definition. For a 2 × 2 integral matrix A =

[

a b
c d

]

denote by D =

Tr(A)2 − 4 det(A). If D is a square (e.g. det(A) = 0), that is, the characteristic
polynomial of the matrix factors over the integers, say, f(x) = (x − α)(x − δ),

where α ≥ δ, then, for α 6= δ the matrix

[

α β
0 δ

]

(i.e. the SW entry must be

0) is reduced if 0 ≤ β < α− δ and, for α = δ if β ≥ 0.

Example. The matrix unit E12 =

[

0 1
0 0

]

is reduced, E21 is not reduced.

Actually E21 = UE12U , with U =

[

0 1
1 0

]

, so these are similar.
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Also from [2] (Theorem 5.2), recall the following result

Theorem 1 Let M ∈ M2(Z) and assume that the characteristic polynomial of
M factors over Z. Then M is similar to a reduced matrix. Moreover, this class
representative is unique thus no two different reduced matrices are similar.

We first classify the nilpotents in M2(Z) by similarity classes.

Proposition 2 Any nonzero 2× 2 nilpotent integral matrix is similar to a pos-
itive multiple of E12.

Proof. Any nilpotent matrix is of form T =

[

s x
y −s

]

for some s, x, y ∈ Z

such that s2 + xy = 0. If s = 0 then at least one from x, y is also zero and we
have strictly triangular nilpotents (including 02). For such nilpotents we just
mention

1) {02} forms a singleton class.

2) Since

[

0 a
0 0

]

is similar to

[

0 −a
0 0

]

(conjugation with

[

1 0
0 −1

]

)

and

[

0 a
0 0

]

is similar to

[

0 0
a 0

]

(conjugation with

[

0 1
1 0

]

), up to simi-

larity it suffices to consider strictly upper triangular nilpotents

[

0 a
0 0

]

with

positive integers a.

3) Let a 6= 0 6= b be positive integers. Then

[

0 a
0 0

]

is similar to

[

0 b
0 0

]

iff a ∈ {±b}.

Indeed, suppose

[

0 a
0 0

]

is similar to

[

0 b
0 0

]

. Then there exists an

invertible matrix U such that

[

0 a
0 0

]

U = U

[

0 b
0 0

]

. If U =

[

p r
s t

]

,

then ar = 0 = rb and at = pb. By hypothesis, r = 0 and so det(U) = pt = ±1.
Hence p, t ∈ {±1} and so a ∈ {±b}.

If s 6= 0 then also x 6= 0 6= y which we call strictly nonzero nilpotents.

As in [2], we show that any matrix T =

[

s x
y −s

]

for some s, x, y ∈ Z−{0}

such that s2 + xy = 0, is similar to a positive multiple of E12.
If gcd(s; y) = d then s = s′d, y = y′d and there exist δ, γ ∈ Z such that

γs′ − δy′ = 1. In this case we take, P =

[

s′ δ
y′ γ

]

, P−1 =

[

γ −δ
−y′ s′

]

and so P−1TP =

[

d γx+ δs
0 0

]

P =

[

∗ k
0 0

]

= kE12 (because ∗ = 0 since

s′2d+ xy′ = 0, d 6= 0). By computation ky′ = −d.
Notice that s′2d+ xy′ = 0 implies y′|s′2d and since gcd(s′; y′) = 1, it follows

y′|d and so k = −
d

y′
∈ Z, that is,

[

s x
y −s

]

is similar to





0 −
d

y′

0 0



.
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Finally, if necessary, we just conjugate further with

[

1 0
0 −1

]

in order to

obtain a positive multiple of E12.
Examples. 1) k = 1 iff y′ = −d, i.e. y = −d2. If ∼ denotes the simi-

larity relation

[

2 −1
4 −2

]

∼

[

0 −1
0 0

]

= −E12;

[

12 9
−16 −12

]

∼ E12 and
[

418 361
−484 −418

]

∼ E12. Here, if s and y have the same sign, we get −E12 and,

if s and y have the opposite sign, we get E12.

2)

[

12 18
−8 −12

]

∼

[

0 2
0 0

]

;

[

12 8
−18 −12

]

∼

[

0 2
0 0

]

(for the first

d = 4 and k = −
d

y′
= 2, for the second d = 6 and again k = −

d

y′
= 2).

3) If we take Tka =

[

ka ka2

−k −ka

]

, for any k, a ∈ N∗ then s = ka, y = −k

give d = k, s′ = a, y′ = 1 and Tka ∼ kE12. Same remark with respect to the
signs of s and y.

It is now easy to prove the following

Proposition 3 Nilpotents are not uniquely fine in M2(Z).

Proof. By the above discussion, it suffices to check this for a positive multiple of

E12. Suppose kE12 is fine. Then there exists a nilpotent T =

[

s x
y −s

]

(with

s2+xy = 0) such that det(kE12−T ) = ky = ±1, and so k = 1. Hence only E12

may be uniquely fine, but it is not: E12 =

[

0 1
0 0

]

=

[

0 1
1 0

]

+

[

0 0
−1 0

]

=
[

−1 0
1 1

]

+

[

1 1
−1 −1

]

.

As mentioned above, by Proposition 2, we may fix the similarity classes by
selecting kE12, the nilpotent in the fine decomposition. To simplify the wording
we call this an E12-reduction.

Proposition 4 A matrix A =

[

a b
c d

]

(is fine and) admits an E12-reduction

iff there is a k ≥ 0 such that det(A) + kc = ±1.

Proof. First, for a matrix A, suppose there is a k ≥ 0 such that det(A) + kc =
±1. Then det(A− kE12) = ±1 and so A− kE12 is a unit. Hence A is fine with

an E12-reduction. Conversely, suppose A =

[

a b
c d

]

admits kE12 as nilpotent

in a fine decomposition. Then A− kE12 is a unit and the condition follows.
Remark. Not every fine matrix admits an E12-reduction but every fine

matrix is similar to a matrix which has an E12-reduction.
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Thus, for the similarity classes of fine matrices we can choose as representa-
tives, the E12-reduced (fine) matrices.

Example. In [3], the matrix A =

[

1 2
3 0

]

was mentioned as fine, but there

is no k ≥ 0 such that −6 + 3k = ±1.

A =

[

1 2
3 0

]

=

[

−1 3
−1 2

]

+

[

2 −1
4 −2

]

. We use Proposition 2 for

the nilpotent

[

2 −1
4 −2

]

. For P =

[

1 −1
2 −3

]

we obtain A′ = P−1AP =
[

12 −18
7 −11

]

=

[

12 −19
7 −11

]

+

[

0 1
0 0

]

. Here det(A) = det(A′) = −6 (and

Tr(A) = Tr(A′) = 1). For k = 1, A′ − E12 is a unit and det(A′ − E12) =
det(A′) + c′ = det(A) + 7 = −6 + 7 = 1 and A and A′ are similar.

3 Classes of uniquely fine matrices

Finding integral 2×2 fine matrices amounts to solving some special Diophantine
equations as follows from

Theorem 5 For a 2× 2 integral matrix A =

[

a b
c d

]

, denote − det(A)± 1 by

l. Then A is fine iff
(i) the system cx + by = l, s2 + xy = 0 with unknowns x, y, s has integer

solutions, whenever a = d, or
(ii) the (quadratic) Diophantine equation

c2x2 + (a− d)2xy + b2y2 − 2clx− 2bly+ l2 = 0

has integer solutions x, y, whenever a 6= d.

Proof. Since nilpotents in M2(Z) have the form

[

s x
y −s

]

with s2 + xy = 0,

A is fine iff det(

[

a b
c d

]

−

[

s x
y −s

]

) = ±1. This condition can be written

s(a−d) = −cx− by+ l. If a = d we get (i) and if a 6= d, eliminating s we obtain
the quadratic Diophantine equation. Notice that −s(a − d) = −cx − by + l is
also suitable since (−s)2 + xy = 0.

Any 2×2 integral matrix A whose characteristic polynomial factors over the

integers is similar to a reduced matrix, which has the form Cabd =

[

a b
0 d

]

with 0 ≤ b ≤ |a− d|, if a 6= d, and b ≥ 0 if a = d. Hence when addressing
uniquely fineness of integral 2 × 2 matrices in this case, (up to similarity) only
such matrices must be studied.

Proposition 6 Matrices of form Bab =

[

a b
0 a

]

are not uniquely fine.
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Proof. The matrix Bab =

[

a b
0 a

]

is fine iff det(Bab−

[

s x
y −s

]

) = a2+by =

±1 with s2+xy = 0, that is iff b divides a2± 1. Clearly, for any given y, we can
choose x = −y = ±s for s2+xy = 0, but many other choices could be available.
Hence such matrices are either not fine or else of fine index at least 2.

Example. B53 =

[

5 3
0 5

]

=

[

−3 −5
8 13

]

+

[

8 8
−8 −8

]

=

[

13 −5
8 −3

]

+
[

−8 8
−8 8

]

.

Proposition 7 A matrix Cabd =

[

a b
0 d

]

with a 6= d, 0 ≤ b ≤ |a− d| is fine

iff at least one of the (quadratic) Diophantine equations

(a− d)2xy + b2y2 − 2bly + l2 = 0 (*)

is solvable (over integers), where l := −ad± 1.

Proof. Indeed, Cabd is fine iff det(Cabd−

[

s x
y −s

]

) = ad+s(a−d)+by = ±1,

i.e. by − l = −s(a− d). Hence s2 + xy = 0 leads to the Diophantine equations
(*).

Notice that (*) can be written (by − l)2 = −(a− d)2xy, so that xy ≤ 0 and
xy = −s2.

Quadratic Diophantine equations Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
are classified by the sign of ∆ = B2 − 4AC, which, for the equation (*) is
∆ = (a−d)4 > 0 since a 6= d. Thus, (*) is a Diophantine equation of hyperbolic
type, whose reduced form is a Pell equation

X2 − Y 2 = N = (2bl)2

obtained (for b 6= 0) using the substitutionsX = −(a−d)2x+2bl, Y = (a−d)2x+
2b2y−2bl. Since the coefficient of Y 2 is a square, this is the less interesting case
of a Pell equation, because, for a given integer N , it is easily solved using the
factorization of N and identifying the factors (if N = nm then from X−Y = n,

X + Y = m we get X =
n+m

2
, Y =

m− n

2
).

However, when studying some given classes of matrices, we shall merely use
computer aid (e.g. [1]), instead of the above method.

The following result shows that the study of the matrices Cabd can be con-
siderably reduced to a minimum number of representatives.

Proposition 8 When searching for uniquely fine matrices Cabd it suffices to
take a > |d|, then take the reminder r of the division of b by a− d, and 2 ≤ r ≤
a− d− 2. Moreover, it suffices to check only half of these, say, the small values
of r beginning with 2.
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Proof. First notice that if we change (a, d) into (−a,−d), the equation (*)
remains the same. Hence we can assume a − d > 0. Next, if we change (a, d)
into (d, a), again the equation remains the same. So we can assume a > |d|.

Observe that matrices with negative bmust not be treated separately because

these (by conjugation with

[

1 0
0 −1

]

) are similar with those with b > 0.

Further, for a given a − d, only the (reduced) representatives Cabd with
0 ≤ b < a− d must be checked. Indeed, if r is the reminder of the division of b
by a− d, it is readily checked that

[

a (a− d)q + r
0 d

]

=

[

1 −q
0 1

] [

a r
0 d

] [

1 q
0 1

]

for any 0 ≤ r < a−d.

Finally, since
[

a (a− d)− b
0 d

]

=

[

1 1
0 −1

] [

a b
0 d

] [

1 1
0 −1

]

, only ’half’ of these

are independent representatives.
Remarks. 1) (*) admits x = 0 in some solution iff b divides l (and then

y =
l

b
∈ Z). Special case, b = 1.

2) (*) admits y = 0 in some solution iff l = 0, i.e. for 8 units:

I2,−I2,

[

1 m
0 −1

]

,

[

−1 m
0 1

]

with m ∈ {0, 1, 2}. None of these is uniquely

fine.

Proposition 9 For a given (a, d), matrices are (fine but) not uniquely fine if
b = (a − d)k ± 1, and are fine (but not uniquely fine) only if a − d divides l
whenever b = (a− d)k.

Proof. If |a− d| = b + 1, the minus equation (according to the sign in l) has
the solution (−ad−1, ad+1) and the plus equation has (−ad+1, ad−1). None
of the corresponding matrices are uniquely fine.

Matrices

[

a (a− d)k
0 d

]

, k ∈ Z are fine (but not uniquely) only if a − d

divides l = −ad± 1.
As seen in the above proof, it suffices to check this for k = 0, i.e. for b = 0.

Since such matrices are symmetric, excepting the easy case when these are
units, if these admit a fine decomposition, also the transpose decomposition is
available, which gives fine index at least 2 (notice that 02 is the only symmetric
nilpotent in M2(Z)).

Examples. 1) If d = 0 and a ≥ 2 (in this case l = ±1), matrices

[

a ka
0 0

]

,

k ∈ Z, for |a| ≥ 2 are never fine.

2) The matrices

[

6 7k
0 −1

]

which are similar to

[

6 0
0 −1

]

=

[

5 −1
1 0

]

+
[

1 1
−1 −1

]

=

[

5 1
−1 0

]

+

[

1 −1
1 −1

]

have index 2.

3) Take a− d = 2 and so (a, d) ∈ {(2, 0), (1,−1)} with l ∈ {±1, 1± 1}.
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If a = 2, d = 0, l = ±1 then the matrices are not fine for b ∈ {0, 2} and have

fine index 2 for b = 1 (so

[

2 0
0 0

]

and more general

[

k 0
0 0

]

, are not fine for

any k /∈ {−1, 0, 1}).
If a = 1, d = −1, l = 1± 1 then matrices have fine index ∞ for b ∈ {0, 1, 2}.

Indeed,

[

1 0
0 −1

]

=

[

1 0
−t −1

]

+

[

0 0
t 0

]

,

[

1 1
0 −1

]

=

[

1 1− t
0 −1

]

+
[

0 t
0 0

]

and

[

1 2
0 −1

]

=

[

1 −t
0 −1

]

+

[

0 t
0 0

]

.

It is worth noting that these are examples of units of fine index ∞.

More general, any triangular unit has infinite fine index:

[

±1 a
0 ±1

]

=
[

±1 a− t
0 ±1

]

+

[

0 t
0 0

]

for any t ∈ Z. Hence there are no uniquely fine

matrices in this case.
4) Suppose a− d = 3 and so (a, d) ∈ {(3, 0), (2,−1)}.
If b = 0 then the equations (*) are 9xy + l2 = 0, with no solutions if

l ∈ {±1, 2− 1} but with solutions for l = 2+1, i.e.,

[

2 0
0 −1

]

=

[

1 1
−1 0

]

+
[

1 −1
1 −1

]

=

[

1 −1
1 0

]

+

[

1 1
−1 −1

]

(transposes).

If b = 1 or b = 2 = 3− 1, both have index at least 2 (see Proposition 9). So
there are no uniquely fine matrices also in this case.

In the sequel, according to previous remarks, we focus on the following hy-
pothesis: a > 0, d ≤ 0 and a ≥ |d|. Here are our results.

Theorem 10 1) For small even a − d, i.e. a − d ∈ {0, 2, 4, 6, 8, 10} there are
no uniquely fine matrices, for any integer b.

2) For a − d ∈ {1, 3, 5} there are no uniquely fine matrices, for any integer
b.

3) For any small odd a− d ∈ {7, 9, 11, 13} there are uniquely fine matrices,
for suitable b ≤ a− d.

Proof. The case a− d = 0 (or a = d) was clarified in Theorem 6.
There are only two (idempotent) matrices for a − d = 1 (0 ≤ b ≤ a − d

suffices, up to similarity):

[

1 0
0 0

]

and

[

1 1
0 0

]

. Both are fine; the first of

index 2, the second of index 4.
The cases a− d ∈ {2, 3} were presented in the previous examples. The cases

a − d ∈ {4, 5, 6, 8, 9, 10} were verified using [1]. Below we list the complete
results for a − d ∈ {7, 11, 13}. Since by Proposition 9, there are no uniquely
fine matrices for r = 0 or r ∈ {1, a− d− 1} (here r denotes the reminder of the
division of b by a− d), we restrict ourselves to r ∈ {2, 3, ..., a− d− 2}.

Proposition 11 (a) The matrices

[

4 7k + r
0 −3

]

, k ∈ Z and r ∈ {2, 3, 4, 5}

are uniquely fine.
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(b) For (a, d) = (5,−2), all matrices have fine index 2 or 3.

(c) The matrices

[

6 7k + r
0 −1

]

, k ∈ Z and r ∈ {2, 3, 4, 5} are uniquely fine.

(d) For (a, d) = (7, 0), matrices are not fine excepting (see Proposition 9)
b = 7k ± 1 which are of index 2.

Proposition 12 (a) The matrices

[

6 11k + r
0 −5

]

, k ∈ Z and 2 ≤ r ≤ 9 are

uniquely fine.

(b) The matrices

[

7 11k + r
0 −4

]

, k ≥ 0 and r 6= 0 have fine index 2.

(c) The matrices

[

8 11k + r
0 −3

]

, k ∈ Z and 2 ≤ r ≤ 9 are uniquely fine.

(d) The matrices

[

9 11k + r
0 −2

]

, k ∈ Z and 2 ≤ r ≤ 9 are uniquely fine.

(e) The matrices

[

10 11k + r
0 −1

]

, k ∈ Z and 2 ≤ r ≤ 9 are uniquely fine.

(f) The matrices

[

11 11k + r
0 0

]

, k ∈ Z and r 6= ±1 are not fine.

Proposition 13 (a) The matrices

[

7 13k + r
0 −6

]

, r ∈ {2, 3, 4, 5, 6} and k ∈ Z

are uniquely fine.

(b) The matrices

[

8 13k + r
0 −5

]

, k ∈ Z and r ∈ {2, 3, 4, 5, 6} are uniquely

fine.

(c) The matrices

[

9 13k + r
0 −4

]

, k ∈ Z and r ∈ {2, 3, 4, 5, 6} have index 2.

(d) The matrices

[

10 13k + r
0 −3

]

, k ∈ Z are not fine for r ∈ {2, 6}, are

uniquely fine for r ∈ {3, 4}and have index 2 for r = 5.

(e) The matrices

[

11 13k + r
0 −2

]

, k ∈ Z and r ∈ {2, 3, 4, 5, 6} have index

2.

(f) The matrices

[

12 13k + r
0 −1

]

, k ∈ Z are uniquely fine for r ∈ {2, 6}

and are not fine for r ∈ {3, 4, 5}.

(g) The matrices

[

13 13k + r
0 0

]

, k ∈ Z and r ∈ {2, 3, 4, 5, 6} are not fine.

Therefore, the following remain open:

Prove or disprove. 1) Matrices Cabd =

[

a b
0 d

]

with 0 ≤ b ≤ |a− d|,

a 6= d and even a− d are not uniquely fine.

2) For any odd a− d ≥ 15 there exist b with 0 ≤ b ≤
|a− d|

2
, such that Cabd

is uniquely fine.
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Finally recall that in [3], the fineness of 2 × 2 integral matrices of type

Mbc =

[

1 b
c 0

]

was discussed with a special concern for the cases c = b,

c = b+1 and c = b+2. While formulas show that matrices Mbb and Mb,b+2 are
always fine, this fails for matrices Mb,b+1. Since finding uniquely fine matrices
was not addressed in [3], next we provide more details in the first two cases.

Proposition 14 Matrices Mbb, b ≥ 0 and Mb−1,b+1, b ≥ 1 are not uniquely
fine.

Proof. To make this self-contained, we recall the formula (5.17) from [3]

Mbb =

[

−b2 −b2 + b− 1
b2 + b+ 1 b2 + 1

]

+ (b2 + 1)

[

1 1
−1 −1

]

.

It is easy to show that the only symmetric nilpotent in M2(Z) is 02. Since Mbb

are symmetric, but the components of the fine decomposition are not, a different
fine decomposition is given by the transposes. Hence, such matrices have index
at least 2.

As for Mb−1,b+1, a fine decomposition (namely (5.18)) was given in [3] (with
a unit of determinant = 1). Here is a different one (with a unit of determinant
= −1)

Mb−1,b+1 =

[

b2 − 1 −b2 + b+ 1
b2 + b− 1 −b2 + 2

]

+ (b2 − 2)

[

−1 1
−1 1

]

.

Remark. M00 is an idempotent of fine index 2, M11 is a unit of infinite fine
index, M02 is an idempotent of fine index 4.
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