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Abstract 

Fine elements were defined in [3] for unital rings, as sums of units by 
nilpotents. Such a sum is called uniquely fine if it is the only decomposition 

tu +  with unit u and nilpotent t. The paper reveals the many facets of this 
notion for 22 ×  integral matrices. 

1. Introduction 

In a unital ring R, a sum ue +  with idempotent e and unit u was 
called a clean element by Nicholson [5], and, a sum te +  with 
idempotent e and nilpotent t was called a nil-clean element by Diesl [4]. 
Accordingly, clean and nil-clean rings were defined and studied. 
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Finally, a nonzero element a in a unital ring R was called fine (see 
[3]) if tua +=  with a unit u and a nilpotent t. It is called uniquely fine if 
there is a unique unit u such that ua −  is nilpotent and strongly fine if 

.tuut =  Accordingly, one defines fine, uniquely fine and strongly fine 
rings, respectively. 

It was proved in [3] that uniquely fine rings coincide with strongly 
fine rings and these are precisely the division rings. Elementwise, a 
nonzero element is strongly fine iff it is a unit. 

There are uniquely fine elements which are not units and units may 
not be uniquely fine. 

For example, in ( ),22 FM  a fine ring together with the two element 

field ,2F  all (the 6) nontrivial idempotents are uniquely fine but not 

units. From the six units, only the two order 3 units are uniquely fine. 

Actually, units are uniquely fine in a unital ring iff the ring is 
reduced. Indeed, if R is not reduced and t≠0  is nilpotent, then =+ t1  
( ) 01 ++ t  is a unit which has two different fine decompositions. 

Conversely, if R is reduced, every fine element is obviously uniquely (and 
strongly) fine and so, is a unit. 

Clearly, if R is not reduced and a unit u commutes with a nonzero 
nilpotent t, then tu +  is (strongly fine, so a unit and) not uniquely fine: 

( ) 0++=+ tutu  are different fine decompositions. 

The aim of this note is to study the uniquely fine 22 ×  integral 
matrices. In Section 2, the reduction to similarity classes of fine 22 ×  
integral matrices is described and fine decompositions which use a 
positive multiple of the matrix unit 12E  (as special nilpotent) are 

presented. In the last section, large (infinite) classes of uniquely fine 
matrices are found, all whose characteristic polynomial factors over the 
integers and examples of units of infinite fine index are given. Since 
uniquely fine matrices were not addressed in [3], but several examples of 
fine or not fine matrices were given, these are revisited from this point of 
view. 
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For a unital ring ( )RUR,  denotes the set of units, ( )RN  denotes the 

set of nilpotent elements, ( )RnM  denotes the ring of all nn ×  matrices 

with entries in ( )AR Tr,  denotes the trace of the matrix A. By ijE  we 

denote the (so called) matrix unit with all entries zero excepting the ( )ji,  

entry, which is 1. The zero matrix and the identity matrix in ( )R2M  are 

denoted 20  and ,2I  respectively. 

2. Fine 22 ×  Matrices and Similarity 

Definition. Two 22 ×  matrices A, B over any unital ring R, are 
similar (or conjugate) if there is an invertible matrix U such that  

.1AUUB −=  Since similarity is obviously an equivalence relation, a 
partition of ( )R2M  corresponds to it. The subsets in this partition are 

called similarity classes. 

Together with units and nilpotents, the notions of fine, uniquely fine 
and strongly fine are similarity invariants. So is the fine index (a matrix 
has fine index n if it has exactly n different fine decompositions). 

In the sequel, ,Z=R  that is, we deal only with 22 ×  integral 

matrices. To determine all fine matrices actually means to find all the 
similarity classes of fine matrices. In doing so, it is natural to fix each 
similarity class by a special representative. In this paper, this will be 
done into two different ways. 

The first has already been done by Behn and Van der Merwe in [2] 
where an algorithm is presented, which, given a 22 ×  matrix, finds a 
canonical representative (called reduced) in its similarity class. 

The second consists in fixing the similarity classes by a 
representative which uses a special nilpotent namely, a positive multiple 
of .12E  
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As for the first, recall the following: 

Definition. For a 22 ×  integral matrix 



=

dc
ba

A  denote by 

( ) ( ).det4Tr 2 AAD −=  If D is a square (e.g., det(A) = 0), that is, the 

characteristic polynomial of the matrix factors over the integers, say, 
( ) ( ) ( ),δ−α−= xxxf  where ,δ≥α  then, for δ≠α  the matrix 







δ
βα

0
 (i.e., the SW entry must be 0) is reduced if δ−α<β≤0  and, 

for δ=α  if .0≥β  

Example. The matrix unit 











=

00

10
12E  is reduced, 21E  is not 

reduced. Actually ,1221 UUEE =  with ,
01

10












=U  so these are 

similar. 

Also from [2] (Theorem 5.2), recall the following result: 

Theorem 1. Let ( )Z2M∈M  and assume that the characteristic 

polynomial of M factors over Z. Then M is similar to a reduced matrix. 
Moreover, this class representative is unique thus no two different reduced 
matrices are similar. 

We first classify the nilpotents in ( )Z2M  by similarity classes. 

Proposition 2. Any nonzero 22 ×  nilpotent integral matrix is 
similar to a positive multiple of .12E  

Proof. Any nilpotent matrix is of form 












−
=

sy

xs
T  for some 

Z∈yxs ,,  such that .02 =+ xys  Since the 0=s  case is easy to settle 

we just discuss the 0≠s  case, for which .0 yx ≠≠  
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We show that any matrix 












−
=

sy

xs
T  for some { }0,, −∈ Zyxs  

such that ,02 =+ xys  is similar to a positive multiple of .12E  

If ( ) ,;gcd dys =  then dyydss ′=′= ,  and there exist Z∈γδ,  such 

that .1=′δ−′γ ys  In this case we take, 












′′−

δ−γ
=













γ′

δ′
= −

sy
P

y

s
P 1,  

and so 12
1

0000
EP

sxd
TPP k

k
=











∗
=











 δ+γ
=−  (because 0=∗  

since 0,02 ≠=′+′ dyxds ). By computation .dy −=′k  

Notice that 02 =′+′ yxds  implies dsy 2′′  and since ( ) ,1;gcd =′′ ys  it 

follows dy′  and so ,Z∈
′

−= y
dk  that is, 













− sy

xs
 is similar to 

.
00

0













′

− y
d

 

Finally, if necessary, we just conjugate further with 












− 10

01
 in 

order to obtain a positive multiple of .12E   

Examples. (1) 1=k  iff ,dy −=′  i.e., .2dy −=  If ~ denotes the 

similarity relation ;~
1216

912
;

00

10
~

24

12
1212 EE













−−
−=











 −













−

−
 

and .~
418484

361418
12E













−−
 Here, if s and y have the same sign, we get 

12E−  and, if s and y have the opposite sign, we get .12E  
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(2) 
























−−























−− 00

20
~

1218

812
;

00

20
~

128

1812
 (for the 

first 4=d  and ,2=
′

−= y
dk  for the second 6=d  and again 2=

′
−= y

dk ). 

(3) If we take ,
2













−−
=

a

aa
T a

kk

kk
k  for any ,, ∗∈Nak  then ,as k=  

k−=y  give 1,, =′=′= yasd k  and .~ 12ET a kk  Same remark with 

respect to the signs of s and y. 

It is now easy to prove the following: 

Proposition 3. Nilpotents are not uniquely fine in ( ).2 ZM  

Proof. By the above discussion, it suffices to check this for a positive 
multiple of .12E  Suppose 12Ek  is fine. Then there exists a nilpotent  













−
=

sy

xs
T  (with 02 =+ xys ) such that ( ) ,1det 12 ±==− yTE kk  

and so .1=k  Hence only 12E  may be uniquely fine, but it is not: 

.
11

11

11

01

01

00

01

10

00

10
12













−−
+











−
=













−
+












=












=E   

As mentioned above, by Proposition 2, we may fix the similarity 
classes by selecting ,12Ek  the nilpotent in the fine decomposition. To 

simplify the wording we call this an 12E -reduction. 

Proposition 4. A matrix 











=

dc

ba
A  (is fine and) admits an   

12E -reduction iff there is a 0≥k  such that ( ) .1det ±=+ cA k  

Proof. First, for a matrix A, suppose there is a 0≥k  such that 
( ) .1det ±=+ cA k  Then ( ) 1det 12 ±=− EA k  and so 12EA k−  is a unit. 

Hence A is fine with an 12E -reduction. Conversely, suppose 
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=

dc

ba
A  admits 12Ek  as nilpotent in a fine decomposition. Then 

12EA k−  is a unit and the condition follows.  

Remark. Not every fine matrix admits an 12E -reduction but every 

fine matrix is similar to a matrix which has an 12E -reduction. 

Thus, for the similarity classes of fine matrices we can choose as 
representatives, the 12E -reduced (fine) matrices. 

Example. In [3], the matrix 











=

03

21
A  was mentioned as fine, 

but there is no 0≥k  such that .136 ±=+− k  

.
24

12

21

31

03

21













−

−
+













−

−
=












=A  We use Proposition 2 for 

the nilpotent .
24

12













−

−
 For ,

32

11













−

−
=P  we obtain APPA 1−=′  

.
00

10

117

1912

117

1812












+













−

−
=













−

−
=  Here ( ) ( ) 6detdet −=′= AA  

( ( ) ( ) ).1TrTrand =′= AA  For 12,1 EA −′=k  is a unit and det  

( ) ( ) ( ) 1767detdet12 =+−=+=′+′=−′ AcAEA  and A and A′  are 

similar. 

3. Classes of Uniquely Fine Matrices 

Finding integral 22 ×  fine matrices amounts to solving some special 
Diophantine equations as follows from 

Proposition 5. For a 22 ×  integral matrix ,











=

dc

ba
A  denote 

( ) 1det ±− A  by l. Then A is fine iff 
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(i) the system 0, 2 =+=+ xyslbycx  with unknowns syx ,,  has 

integer solutions, whenever ,da =  or 

(ii) the (quadratic) Diophantine equation 

( ) 022 222222 =+−−+−+ lblydxybxydaxc  

has integer solutions ,, yx  whenever .da ≠  

Proof. Since nilpotents in ( )Z2M  have the form 












− sy

xs
 with 

,02 =+ xys  A is fine iff ( ) .1det ±=












−
−













sy

xs

dc

ba
 This 

condition can be written ( ) .lbycxdas +−−=−  If da =  we get (i) and if 

,da ≠  eliminating s we obtain the quadratic Diophantine equation. 

Notice that ( ) lbycxdas +−−=−−  is also suitable since ( ) .02 =+− xys  

 

Any 22 ×  integral matrix A whose characteristic polynomial factors 
over the integers is similar to a reduced matrix, which has the form 












=

d

ba
Cabd

0
 with ,0 dab −≤≤  if ,da ≠  and 0≥b  if .da =  

Hence when addressing uniquely fineness of integral 22 ×  matrices in 
this case, (up to similarity) only such matrices must be studied. 

Proposition 6. Matrices of form 











=

a

ba
Bab

0
 are not uniquely 

fine. 
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Proof. The matrix 











=

a

ba
Bab

0
 is fine iff ( )













−
−

sy

xs
Babdet  

12 ±=+= bya  with ,02 =+ xys  that is iff b divides .12 ±a  Clearly, for 

any given y, we can choose syx ±=−=  for ,02 =+ xys  but many other 

choices could be available. Hence such matrices are either not fine or else 
of fine index at least 2.  

Example. =












−−
+











 −−
=












=

88

88

138

53

50

35
53B  

.
88

88

38

513













−

−
+













−

−
 

Proposition 7. A matrix 











=

d

ba
Cabd

0
 with dabda −≤≤≠ 0,  

is fine iff at least one of the (quadratic) Diophantine equations 

( ) 02 2222 =+−+− lblyybxyda   ( )∗  

is solvable (over integers), where .1: ±−= adl  

Proof. Indeed, abdC  is fine iff ( ) ( )dasad
sy

xs
Cabd −+=













−
−det  

,1±=+ by  i.e., ( ).daslby −−=−  Hence 02 =+ xys  leads to the 

Diophantine equations ( ).∗   

Notice that ( )∗  can be written ( ) ( ) ,22 xydalby −−=−  so that 

0≤xy  and .2sxy −=  
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Quadratic Diophantine equations 022 =+++++ FEyDxCyBxyAx  

are classified by the sign of ,42 ACB −=∆  which, for the equation ( )∗  is 

( ) 04 >−=∆ da  since .da ≠  Thus, ( )∗  is a Diophantine equation of 

hyperbolic type, whose reduced form is a Pell-like equation 

( )222 2blNYX ==−  

obtained (for 0≠b ) using the substitutions ( ) ,22 blxdaX +−−=  

( ) .22 22 blybxdaY −+−=  Since the coefficient of 2Y  is a square, this is 

the less interesting case of a Pell equation, because, for a given integer N, 
it is easily solved using the factorization of N and identifying the factors 

(if ,nmN =  then from mYXnYX =+=− ,  we get ,2
mnX +=  

2
nmY −= ). 

However, when studying some given classes of matrices, we shall 
merely use computer aid (e.g., [1]), instead of the above method. 

The following result shows that the study of the matrices abdC  can 

be considerably reduced to a minimum number of representatives. 

Proposition 8. When searching for uniquely fine matrices abdC  it 

suffices to take ,da >  then take the reminder r of the division of b by 

,da −  and .22 −−≤≤ dar  Moreover, it suffices to check only half of 

these, say, the small values of r beginning with 2. 

Proof. First notice that if we change ( )da,  into ( ),, da −−  the 

Equation ( )∗  remains the same. Hence we can assume .0>− da  Next, 

if we change ( )da,  into ( ),, ad  again the equation remains the same. So 

we can assume .da >  
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Observe that matrices with negative b must not be treated separately 

because these (by conjugation with 












− 10

01
) are similar with those 

with .0>b  

Further, for a given ,da −  only the (reduced) representatives abdC  

with dab −<≤0  must be checked. Indeed, if r is the reminder of the 
division of b by ,da −  it is readily checked that 

( )



































 −
=











 +−

10

1

010

1

0

q

d

raq

d

rqdaa
 for any  

.0 dar −<≤  Finally, since 

( )
,

10

11

010

11

0 











−























−
=











 −−

d

ba

d

bdaa
 only ‘half ’ of 

these are independent representatives.  

Remarks. (1) ( )∗  admits 0=x  in some solution iff b divides l (and 

then Z∈= b
ly ). Special case, .1=b  

(2) ( )∗  admits 0=y  in some solution iff ,0=l  i.e., for 8 units: 











−













−
−

10

1
,

10

1
,, 22

mm
II  with { }.2,1,0∈m  None of these is 

uniquely fine. 

Proposition 9. For a given ( ),, da  matrices are (fine but) not 

uniquely fine if ( ) ,1±−= kdab  and are fine (but not uniquely fine) only 

if da −  divides l whenever ( ) .kdab −=  

Proof. If ,1+=− bda  the minus equation (according to the sign in l) 

has the solution ( )1,1 +−− adad  and the plus equation has 

( ).1,1 −+− adad  None of the corresponding matrices are uniquely fine. 
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Matrices 
( )

Z∈










 −
k

d

k
,

0

daa
 are fine (but not uniquely) only if 

da −  divides .1±−= adl  

As seen in the above proof, it suffices to check this for ,0=k  i.e., for 

.0=b  Since such matrices are symmetric, excepting the easy case when 
these are units, if these admit a fine decomposition, also the transpose 
decomposition is available, which gives fine index at least 2 (notice that 

20  is the only symmetric nilpotent in ( )Z2M ).  

Examples. (1) If 0=d  and 2≥a  (in this case 1±=l ), matrices 

,,
00

Z∈












′
k

kaa
 for 2≥a  are never fine. 

(2) The matrices 












− 10

76 k
 which are similar to =













− 10

06
 













−

−
+













−
=













−−
+











 −

11

11

01

15

11

11

01

15
 have index 2. 

(3) Take 2=− da  and so ( ) ( ) ( ){ }1,1,0,2, −∈da  with { }.11,1 ±±∈l  

If ,1,0,2 ±=== lda  then the matrices are not fine for { }2,0∈b  

and have fine index 2 for 1=b  (so 












00

02
 and more general 

,
00

0











k
 are not fine for any { }1,0,1−∈/k ). 

If ,11,1,1 ±=−== lda  then matrices have fine index ∞  for  

{ }.2,1,0∈b  Indeed, =












−










+













−−
=













− 10

11
,

0

00

1

01

10

01

tt
 












+













−

−

00

0

10

11 tt
 and .

00

0

10

1

10

21












+













−

−
=













−

tt
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It is worth noting that these are examples of units of fine index .∞  

More general, any triangular unit has infinite fine index: 












+













±

−±
=













±

±

00

0

10

1

10

1 ttaa
 for any .Z∈t  Hence there are 

no uniquely fine matrices in this case. 

(4) Suppose 3=− da  and so ( ) ( ) ( ){ }.1,2,0,3, −∈da  

If ,0=b  then the equations ( )∗  are ,09 2 =+ lxy  with no solutions if 

{ }12,1 −±∈l  but with solutions for ,12 +=l  i.e., =












− 10

02
 













−−
+











 −
=













−

−
+













− 11

11

01

11

11

11

01

11
 (transposes). 

If 1=b  or ,132 −==b  both have index at least 2 (see Proposition 9). 
So there are no uniquely fine matrices also in this case. 

In the sequel, according to previous remarks, we focus on the 
following hypothesis: 0,0 ≤> da  and .da ≥  Here are our results. 

Theorem 10. (1) For small even ,da −  i.e., { }10,8,6,4,2,0∈− da  

there are no uniquely fine matrices, for any integer b. 

(2) For { }5,3,1∈− da  there are no uniquely fine matrices, for any 

integer b. 

(3) For any small odd { }13,11,9,7∈− da  there are uniquely fine 

matrices, for suitable .dab −≤  

Proof. The case ( )dada ==− or0  was clarified in Theorem 6. 

There are only two (idempotent) matrices for 1=− da  ( dab −≤≤0  

suffices, up to similarity): 












00

01
 and .

00

11












 Both are fine; the 

first of index 2, the second of index 4. 
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The cases { }3,2∈− da  were presented in the previous examples. 

The cases { }10,9,8,6,5,4∈− da  were verified using [1]. Below we list 

the complete results for { }.13,11,7∈− da  Since by Proposition 9, there 

are no uniquely fine matrices for 0=r  or { }1,1 −−∈ dar  (here r 

denotes the reminder of the division of b by da − ), we restrict ourselves 
to { }.2,,3,2 −−∈ dar …  

Proposition 11. (a) The matrices Z∈












−

+
k

k
,

30

74 r
 and  { }5,4,3,2∈r  

are uniquely fine. 

(b) For ( ) ( ),2,5, −=da  all matrices have fine index 2 or 3. 

(c) The matrices Z∈












−

+
k

k
,

10

76 r
 and { }5,4,3,2∈r  are uniquely 

fine. 

(d) For ( ) ( ),0,7, =da  matrices are not fine excepting (see Proposition 9) 

17 ±= kb  which are of index 2. 

Proposition 12. (a) The matrices Z∈












−

+
k

k
,

50

116 r
 and 92 ≤≤ r  

are uniquely fine. 

(b) The matrices 0,
40

117
≥













−

+
k

k r
 and 0≠r  have fine index 2. 

(c) The matrices Z∈












−

+
k

k
,

30

118 r
 and 92 ≤≤ r  are uniquely 

fine. 

(d) The matrices Z∈












−

+
k

k
,

20

119 r
 and 92 ≤≤ r  are uniquely 

fine. 
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(e) The matrices Z∈












−

+
k

k
,

10

1110 r
 and 92 ≤≤ r  are uniquely 

fine. 

(f) The matrices Z∈










 +
k

k
,

00

1111 r
 and 1±≠r  are not fine. 

Proposition 13. (a) The matrices { }6,5,4,3,2,
60

137
∈













−

+
r

rk
 

and Z∈k  are uniquely fine. 

(b) The matrices Z∈












−

+
k

k
,

50

138 r
 and { }6,5,4,3,2∈r  are 

uniquely fine. 

(c) The matrices Z∈












−

+
k

k
,

40

139 r
 and { }6,5,4,3,2∈r  have 

index 2. 

(d) The matrices Z∈












−

+
k

k
,

30

1310 r
 are not fine for { },6,2∈r  

are uniquely fine for { }4,3∈r  and have index 2 for .5=r  

(e) The matrices Z∈












−

+
k

k
,

20

1311 r
 and { }6,5,4,3,2∈r  have 

index 2. 

(f) The matrices Z∈












−

+
k

k
,

10

1312 r
 are uniquely fine for 

{ }6,2∈r  and are not fine for { }.5,4,3∈r  

(g) The matrices Z∈










 +
k

k
,

00

1313 r
 and { }6,5,4,3,2∈r  are 

not fine. 
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Therefore, the following remain open: 

Prove or disprove. (1) Matrices 











=

d

ba
Cabd

0
 with ≤≤ b0  

dada ≠− ,  and even da −  are not uniquely fine. 

(2) For any odd 15≥− da  there exist b with ,20 dab −
≤≤  such 

that abdC  is uniquely fine. 

Finally recall that in [3], the fineness of 22 ×  integral matrices of 

type 











=

0

1

c

b
Mbc  was discussed with a special concern for the cases 

,1, +== bcbc  and .2+= bc  While formulas show that matrices bbM  

and 2, +bbM  are always fine, this fails for matrices .1, +bbM  Since finding 

uniquely fine matrices was not addressed in [3], next we provide more 
details in the first two cases. 

Proposition 14. Matrices 0, ≥bMbb  and 1,1,1 ≥+− bM bb  are not 

uniquely fine. 

Proof. To make this self-contained, we recall the formula (5.17) from 
[3] 

( ) .
11

11
1

11

1 2
22

22













−−
++













+++

−+−−
= b

bbb

bbb
Mbb  

It is easy to show that the only symmetric nilpotent in ( )Z2M  is .02  

Since bbM  are symmetric, but the components of the fine decomposition 

are not, a different fine decomposition is given by the transposes. Hence, 
such matrices have index at least 2. 
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As for ,1,1 +− bbM  a fine decomposition (namely (5.18)) was given in 

[3] (with a unit of determinant = 1). Here is a different one (with a unit of 
determinant = −1) 

( ) .
11

11
2

21

11 2
22

22

1,1












−

−
−+













+−−+

++−−
=+− b

bbb

bbb
M bb  

 

Remark. 00M  is an idempotent of fine index 2, 11M  is a unit of 

infinite fine index, and 02M  is an idempotent of fine index 4. 
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