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UU rings

GRIGORE CĂLUGĂREANU

ABSTRACT. A new class of rings is studied: rings all whose units are sums 1 + n, for a suitable nilpotent
element n. These are called UU rings.

1. INTRODUCTION

A ring was called clean if every element is a sum of a unit and an idempotent, nil-
clean if every element is a sum of a nilpotent and an idempotent (adding ”strongly”
when these elements commute), and π-regular if for every a ∈ R the descending chain
aR ⊇ a2R ⊇ ... (or equivalently Ra ⊇ Ra2 ⊇ ... ) stabilizes (or, if and only if there is n ≥ 1
such that an ∈ an+1R ∩Ran+1).

While nil-clean rings are clean (see [2] or [3]), the converse fails, but holds if all units
are unipotent (i.e., 1 + n for a nilpotent element n). Moreover, strongly nil-clean rings are
strongly π-regular, the converse fails, but holds if and only if all units are unipotent (see
[3], Corollary 3.11).

These two facts suggest that the class of rings all whose units are unipotent could be
studied independently.

In this paper, this is what we do. Such rings are called UU (units are unipotent). As
mentioned above, strongly nil-clean rings are UU.

We show that this property passes to corners, is not Morita invariant and is not closed
under extensions. UU rings have nil radical and matrix rings have not this property. Fi-
nally we characterize the Abelian groups whose endomorphism rings share this property.

2. BASIC PROPERTIES AND EXAMPLES

In the sequel, R denotes a nonzero ring with identity, N(R) its nilpotent elements and
U(R) the units of R. The ring R will be called a domain if it has no nonzero zero divisors
(not necessarily commutative).

It is well-known that 1 + n is a unit, whenever n is nilpotent, that is 1 +N(R) ⊆ U(R).
The converse fails (e.g., in Z(3), 2 is a unit but 1 = 2− 1 is not nilpotent).

To make the difference, an element a ∈ R in a ring is (sometimes) called unipotent, if
a− 1 is nilpotent. That is, the units in 1 +N(R) are called unipotent.

We can always consider an injective function f : N(R) −→ U(R), f(n) = 1+n, which is
a bijection between nilpotent and unipotent elements. Also notice that N(R)∩U(R) = ∅.

Definition 2.1. A ring is called UU if all units are unipotent (that is, U(R) ⊆ 1 + N(R),
and so 1+N(R) = U(R)). In this case, the above bijection is between nilpotent and units,
and so |N(R)| = |U(R)|, these sets have equal cardinals. Notice that (only) if these are
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finite cardinals, this condition is also sufficient for a ring to be UU (the injective function
f is also surjective).

If R \ U(R) ⊆ N(R) then R = (1 + N(R)) ∪ N(R). In the finite case, if this happens,
half of elements are nilpotent, half are units (i.e., unipotents).

Remark 2.1. 1) Since for any reduced ring R, N(R) = {0}, in a reduced UU ring, 1 is the
only unit. Since clearly −1 is also a unit, −1 = 1 and 2 = 0. This way, char(R) = 2. As a
special case, the ring of all integers, Z is not UU.

2)R\U(R) ⊆ N(R) generally fails for UU rings (i.e., there exist elements which are not
units nor nilpotents). An example is End(Z(2)⊕ Z(4)) (see Section 3).

3) Since −1 is a unit, in a UU ring 2 (or −2) is nilpotent. Therefore, domains (or fields)
with at least 3 elements are not UU. Moreover, modulo nilpotent elements, such a ring
must have characteristic 2.

Recall that an element r ∈ R is said to be quasiregular, if 1 − r is a unit in R. It is
well-known that every nilpotent element is quasiregular. Since 1− r ∈ U(R) is equivalent
to r−1 ∈ U(R), the set 1+U(R) is exactly the set of all quasiregular elements. It is readily
seen that a ring R is UU if and only if every quasiregular element is nilpotent.

Proposition 2.1. A ring Z(m) is UU if and only if m = 2k for a suitable positive integer k.

Proof. Suppose m = pk11 ...p
ks
s . Then m− 1 ∈ U(Z(m)) and m− 2 ∈ N(Z(m)) if and only if

p1...ps|m − 2. But this happens only if p1...ps|2, i.e., m = 2k for a suitable k. Conversely,
Z(2k) is UU. Indeed, in this (commutative) ring, the even classes are nilpotent and the
odd classes are units (and so unipotents). �

Corollary 2.1. The implication: R/I is UU =⇒ R is UU, generally fails.

Indeed, Z/2Z is UU but Z is not.
However

Proposition 2.2. Let I be a nil ideal in a ring R with N(R) closed under addition. If R/I is UU
then R is UU.

Proof. Suppose u ∈ U(R). Then u+ I ∈ U(R/I) and by hypothesis, u+ I = 1+n+ I with
n+ I nilpotent in R/I . Since I is a nil ideal, n is also nilpotent in R and so there is n′ ∈ I ,
and so nilpotent in R, with u = 1 + n+ n′. Finally, n+ n′ ∈ N(R), as desired. �

Remark 2.2. There is no relationship between UU rings and local rings. Indeed, Z(3) is local
but not UU, and any Boolean ring with > 2 elements is UU but not local. We come back
to this below.

Recall the following:

Proposition 2.3. Let R be a commutative ring with identity, and f = a0 + a1X + ...+ anX
n ∈

R[X] be a polynomial. Then
a) f is a unit in R[X] if and only if a0 is a unit in R and a1, a2, ..., an ∈ N(R) are nilpotent

in R;
b) f is nilpotent in R[X] if and only if all the coefficients are nilpotent.

Therefore

Corollary 2.2. A polynomial ring R[X] over a commutative ring with identity is UU if and only
if R is UU.
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Proof. Indeed, for any nilpotent polynomial f , 1+ f = (1+ a0)+ a1X + ...+ anX
n. Every

unit is unipotent in R[X] if and only if R has this property. �

More examples. 1) (Z/2nZ)[x]. Or, more generally, rings which, modulo a nil ideal,
have characteristic 2 and no units but 1.

2) Local rings with nilpotent maximal ideals and residue field Z/2Z.

Proposition 2.4. Every nil-clean ring is clean. The converse is true for UU rings.

Proof. Let a ∈ R be arbitrary. Then a−1 = e+n and so a = e+(1+n) = e+u. Conversely,
let a ∈ R be arbitrary. Then a+ 1 = e+ u and so a = e+ (u− 1) = e+ n since u ∈ U(R) is
unipotent (by hypothesis). �

Proposition 2.5. UU passes to corners.

Proof. Let e ∈ R be an idempotent. First notice that if u ∈ U(eRe) then u − e ∈ U(R).
Further, if R is a UU ring, u − e − 1 ∈ N(R), that is (u − e − 1)k = 0 for some positive
integer k. Finally, the following computation shows that (u − e)k = 0: multiply from left
(u − e − 1)k = 0 by e. Then (u − e)(u − e − 1)k−1 = 0 and since u − e = (u − e)e we
obtain (u − e)2(u − e − 1)k−2 = 0. After similar k − 2 steps, (u − e)k = 0 follows and so
u− e ∈ N(eRe), as desired. �

Remark 2.3. The above computation may be avoided if we notice that, since R is UU,
u− e ∈ U(R) implies 1 + u− (1− e) = u+ e is nilpotent. Hence eRe is UU.

Proposition 2.6. UU rings have nil radical. The converse is not true.

Proof. Suppose R is UU. Then J(R) ⊆ 1 + U(R) = N(R), so the radical is nil. Conversely,
as seen before, Z(3) is a counterexample. �

This generalizes half of the characterization of strongly nil-clean rings in [2] (p. 51: for
a ring R with only trivial idempotents, it is proved that R is nil clean if and only if R is a
local ring with J(R) nil and R/J(R) = F2. Such a ring is further strongly nil clean.)

Finally, observe that End(Z(2)⊕Z(2)) ∼=M2(F2) is not UU. Indeed, (use Corollary 3.3,

or)
[

0 1
1 1

]
is a unit which is not unipotent.

Hence, split extensions of UU rings need not be UU. This example also shows that UU is
not Morita invariant (i.e.,M2(F2) is not UU, even though F2 is).

3. UU MATRIX RINGS

In this short section, we show that no matrix rings are UU. First we give an elementary
proof.

Proposition 3.7. For any n > 1 and any non-zero ring R, there exist invertible matrices U ∈
Mn(R) such that U + In is also invertible.

Proof. In the general odd case take the unit
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U2k+1 =



−1 0 0 0 1 1
0 −1 0 1 1 0
0 0 −1 1 0 0

. . .
...

−1 1 1
1 −1 0
1 0 0

...
. . .

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



, for which

U2k+1 + I2k+1 =



0 0 0 0 1 1
0 0 0 1 1 0
0 0 0 1 0 0

. . .
...

0 1 1
1 0 0
1 0 1

...
. . .

0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1



, is also a unit.

The general even case, is simpler. Just take

U2k =



−1 0 0 1
0 −1 1 0

. . .
...

−1 1
1 0

...
. . .

0 1 0 0
1 0 0 0


, for which

U2k + I2k =



0 0 0 1
0 0 1 0

. . .
...

0 1
1 1

...
. . .

0 1 1 0
1 0 0 1


�

Corollary 3.3. No matrix ring over a ring with identity is UU.

Proof. The units U + In in the previous proposition are not unipotent. �
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Alternative Proof: It is clear that any ring in which identity is a sum of two units is not
UU. Also it is well known that identity in a matrix ringMn(R) with n > 1 is a sum of two
units. For example see Lemma 1 of [5], where it is shown that every diagonal matrix in
Mn(R) with n > 1 is a sum of two units. ThusMn(R) with n > 1 is not UU.

4. UU GROUPS

To simplify wording, as customarily, Abelian groups with UU endomorphism ring,
will be called UU groups (here ”group” means ”Abelian group”). Since 2 (or −2) is
nilpotent in any UU ring, multiplication by 2 must be a nilpotent endomorphism for any
UU group. Hence such a group is bounded by a power of 2, and so, only bounded direct
sums of cyclic 2-groups can be UU groups.

As mentioned above, direct sums of UU groups need not be UU.

Proposition 4.8. Only groups of the form Z(2k1)⊕Z(2k1)⊕ ...⊕Z(2kn) with different ki’s can
be UU groups (finitely many because bounded).

Proof. Since End(Z(2k)⊕ Z(2k)) ∼=M2(Z(2
k)) is not UU, we just have to use Proposition

2.5. �

Before stating our main result, recall the following ingredients
1: [6] For a p-group G, J(End(G)) is nilpotent if and only if the group G is bounded.
2: [6] For a p-group G, J(End(G)) = 0 if and only if G is elementary.
3: [6] If G is a torsion complete p-group then

End(G)/J(End(G)) ∼=
∏
n≥0

Ln,

where Ln is the ring of linear transformations of an Fp-space of dimension fn(G). Here
by fn(G) we denote the nth Ulm-Kaplansky invariant of G.

4: Any finite abelian p-group G is isomorphic to Z(pλ1)×Z(pλ2)× ...×Z(pλn) for some
choice of integers λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0, where Z(m) denotes the cyclic group of order
m. The formula (see [8], Chapter II, Theorem 1.6) for the order of Aut(G), in terms of λ1,
λ2, ..., λn, is

aλ(p) = p|λ|+2n(λ)
n∏
i=1

ϕmi(λ)(p
−1)

where ϕm(t) = (1 − t)(1 − t2)...(1 − tm), λ = (λ1, λ2, ..., λn), |λ| =
∑n
i=1 λi, n(λ) =∑n

i=1(i− 1)λi and the multiplicities mi(λ) = card{j : λj = λi}.

Lemma 4.1. Let G be a finite Abelian 2-group of rank n. Then there is an isomorphism
End(G)/2End(G) ∼=Mn(F2).

Proof. There is a direct decomposition G = C1 ⊕ · · · ⊕ Cn, where all Ci are cyclic sub-
groups of G. Thus End(G) is isomorphic to the matrix ring (Hom(Ci, Cj))1≤i,j≤n (see,
e.g., [4]). Moreover, all groups Hom(Ci, Cj) are cyclic 2-groups. Thus, it is easy to see
End(G)/2End(G) ∼=Mn(F2), as stated. �

Now, here is the main result

Theorem 4.1. An Abelian group G has UU endomorphism ring if and only if it has the form
G = Z(2k1)⊕ Z(2k1)⊕ ...⊕ Z(2kn) with different ki’s.



162 Grigore Călugăreanu

Proof. Using the above Proposition and Proposition 2.1, we only need to show that finite
direct sums of the given form are UU groups. Clearly, we may suppose k1 > k2 > ... > kn.

Recall (see Introduction) that a finite ring R is UU if and only if |N(R)| = |U(R)|.
Therefore, in order to prove the statement it suffices to count nilpotent elements and units
in End(G).

As for units, we show that |Aut(G)| = 1
2n |End(G)|. From 4, in our special case (p = 2,

nonisomorphic cyclic summands, λ = (k1, k2, ..., kn)) we obtain
|Aut(G)| = 2k1+k2+...+kn+2(k2+2k3+...(n−1)kn) × 2−n, that is
|Aut(G)| = 2k1+3k2+5k3+...+(2n−1)kn−n.
Indeed, all mj(λ) are zero excepting mki(λ) = 1 for 1 ≤ i ≤ n.
The cardinal |End(G)| = 2s where s = k1+3k2+ ...+(2n−1)kn is obtained as the cardi-

nal of the matrix ring (Hom(Z(2ki),Z(2kj ))1≤i,j≤n, observing that Hom(Z(2ki),Z(2kj ) ∼=

Z(2kj )[2ki ] ∼=
{

Z(2kj ) if i ≥ j
Z(2ki) if i < j

(see [4]).

Finally, according to 1, 2-groups of the above type have nilpotent (and so, also nil)
radical of the endomorphism ring (i.e., J(R) = N(R)), so it suffices to count the cardinal
of the radical. According to 2, these have nonzero radical.

Using 3, for such 2-groups, all Ulm-Kaplansky are zero excepting

fk1−1(G) = fk2−1(G) = ... = fkn−1(G) = 1. Hence End(G)/J(End(G)) ∼=
n∏
s=1

F2 and so

2n |J(End(G))| = |End(G)|. Thus
|N(End(G))| = |J(End(G))| = 1

2n |End(G)| = |Aut(G)|, as desired. �

Alternative Proof: As observed in Prop. 4.8, it is clear that if G is an abelian UU group,
then G = Z2n1 ⊕ Z2n2 ⊕ ... ⊕ Z2nk with n1 < n2 < ... < nk. Here is an alternative proof
for ”every group of the above form is UU”. As each Z2ni has local endomorphism ring
and no two Z2ni and Z2nj are isomorphic, it is well known that End(G) = J(End(G)) =
k∏
i=1

End(Z2ni ) = J(End(Z2ni )) = Zk2 ; which clearly is UU. Thus End(G) is also UU as

J(End(G)) is nilpotent.

Remark 4.4. Although this proof is shorter, we have also included the first because of the
byproducts on End(G) and Aut(G), emphasized in it.

Example 4.1. Take G = Z(2)⊕Z(4). Using the Pierce decomposition End(Z(2)⊕Z(4)) ∼=[
End (Z(2)) Hom(Z(4),Z(2))

Hom(Z(2),Z(4)) End (Z(4))

]
, we make the following notations:

End (Z(2)) = {0Z(2), 1Z(2)}, End (Z(4)) = {0Z(4), 1Z(4), α, β}with

α =

(
0 1 2 3
0 2 0 2

)
, β =

(
0 1 2 3
0 3 2 1

)
, Hom(Z(4),Z(2)) = {f0, f1} and

Hom(Z(2),Z(4)) = {g0, g1}with zero morphisms f0, g0 and f1(1) = 1, g1(1) = 2.
Summarizing, among the 32 matrices, there are 10 idempotent and 8 nilpotent matrices.

Therefore, we have 8 unipotent matrices (
[

1 f0
g0 1

]
+N ), and another 8 matrices (indeed,[

1 f0
g0 1

]
is the only unit and idempotent, and

[
0 f0
g0 0

]
is nilpotent and idempotent).

These have idempotent square, and so, are not units. Hence all units are unipotent and
the endomorphism ring is UU.

Moreover, for this ring R \ U(R) ⊆ N(R) fails.
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Remark 4.5. 1) If R is UU then R/I may not be UU.
Indeed, the Abelian 2-group G = Z(2k1) ⊕ Z(2k1) ⊕ ... ⊕ Z(2kn) with different ki’s,

has a UU endomorphism ring, but (by Corollary 3.3 and Lemma 4.1) End(G)/2End(G) ∼=
Mn(F2) is not UU. Notice that here 2End(G) is a nil ideal.

2) In [1], it was proved that a finite rank Abelian group G is nil-clean if and only if G is a
finite 2-group.

Therefore, UU endomorphism rings of Abelian groups are nil-clean. However, this is
not true for general UU rings. Indeed, this follows from Corollary 2.2, since polynomial
rings (over nonzero rings) are not (even) clean.
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