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The total number of subgroups of a finite Abelian group.

Grigore Călugăreanu ∗

Abstract. In this note, steps in order to write a formula that gives the total number
of subgroups of a finite abelian group are made.

1 Introduction It is well-known (Frobenius-Stickelberger, 1878, see [4]) that a finite

abelian group is the direct sum of a finite number of cyclic groups of prime power orders.
Obviously, their subgroups have the same structure.

However, when it comes to draw the subgroup lattice of a given finite abelian group,
or to find out the total number of subgroups this group has, this can be a difficult task.
It is the purpose of this note to describe a new method which partially solves these two
problems.

First of all, let us mention some reductions which bring us closer to the real problem.
Let G be a finite abelian group and |G| = n = pr11 pr22 ...prkk , the decomposition of its

order into prime power factors. If G = Gp1
⊕Gp2

⊕ ...⊕Gpk
is the corresponding primary

decomposition, then, denoting by L(G) the subgroup lattice ofG, L(G) ≃ L(Gp1
)×L(Gp2

)×
...× L(Gpk

), the direct product of the corresponding subgroup lattices (Suzuki [11]).
In the sequel we denote by N(G) the number of subgroups of the group G. Hence

N(G) =
k
∏

i=1

N(Gps
) and our counting problem is reduced to p-groups. Moreover, we shall

consider that, given the subgroup lattices of the primary components, one can construct, the
direct product of these lattices, and this finally gives the subgroup lattice of G. Therefore
both problems reduce to primary groups.

In the above decomposition, the subgroup lattice L(G) has generally more subgroups
than the direct product of the subgroup lattices of the direct components.

As for our first problem, we will emphasize, which are the subgroups one has to add to
the direct product of the subgroup lattices of the direct components. This will be possible
using the key result described in the next section.

As for our second problem, we will find a formula which gives the total number of
subgroups of an abelian finite group whose p-ranks do not exceed two.

Formulas which give the number of subgroups of type µ of a given finite p-group of
type λ were given by Delsarte (see [2]), Djubjuk (see [3]), and Yeh (see [12]) in 1948. The
reader may consult an excellent survey on this topic together with connections to symmetric
functions written by L. Butler (see [1]). We mention below two of these formulas.

The application of the theory of symmetric functions to the study of abelian groups
begins with P. Hall’s unpublished work in the 1950’s (according to Macdonald [7], these
were conjectured in 1900 by Steinitz, see [10]). Hall proves that the number of subgroups
H of type µ of a finite abelian p-group G of type λ such that the type of G/H is ν, is a
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polynomial in p with integer coefficients, the Hall polynomial gλµν . Moreover, he finds its

degree and leading coefficient and shows gλµν = gλνµ.

Lemma 1.4.1([1]) For any partitions µ ⊂ λ, the number of subgroups of type µ in a
finite abelian p-group of type λ is

αλ(µ; p) =
∏

j≥1

pµ
′

j+1(λ
′

j−µ′

j+1)

[

λ′
j − µ′

j+1

µ′
j − µ′

j+1

]

p

where λ′ is the conjugate of λ, and µ′ is the conjugate of µ.

Remarks. - If λ = (λ1, λ2...) is a partition, then the conjugate partition λ′ = (λ′
1, λ

′
2...)

has components defined as follows: λ′
j is the number of parts λ′

i such that λ′
i ≥ j. (So the

jth row of the Ferrers diagram of λ′ is the jth column of the Ferrers diagram of λ.)

- Here

[

n
k

]

p

=

n
∏

i=1

(pi−1)

k
∏

i=1

(pi−1)

n−k
∏

i=1

(pi−1)

denote the Gaussian coefficients, the number of all

the k-dimensional subspaces of an n-space.

- The formula given by Djubjuk (see [3]) is similar.

Here is a second formula (adapted from [2]):

N(X ;Y ) =

ps1r2+s2r3+...sk−1rk
r1−1
∏

i1=r2

(ps1 − pi1)
r2−1
∏

i2=r3

(ps2 − pi2)...
rk−1
∏

i1=0

(psk − pik)

pr1r2+r2r3+...rk−1rk
r1−1
∏

i1=r2

(pr1 − pi1)
r2−1
∏

i2=r3

(pr2 − pi2)...
rk−1
∏

i1=0

(prk − pik)

where s1 ≥ s2 ≥ ... ≥ sk ≥ 1 is the signature of a group of type Y and r1 ≥ r2 ≥ ... ≥ rk ≥ 1
is the signature of a subgroup of type X (rj ≤ sj , 1 ≤ j ≤ k).

With our above notation the connection between the invariants which give the type
Y = (n1, n2, ..., nk) and the signature (s1, s2, ..., sk) is given by the following relations:

s1 − s2 = n1, s2 − s3 = n2, ..., sk−1 − sk = nk−1, sk = nk

or

s1 = n1 + n2 + ...+ nk, s2 = n2 + n3 + ...+ nk, ..., sk−1 = nk−1 + nk, sk = nk.

However, for a given p-group, to sum up the numbers given by the above formulas
is another difficult task (e.g., notice that for t < k the signature of G = Zpt ⊕ Zpk is
(2, 2, ..., 2, 1, 1, ..., 1) and one has to sum up all the subgroups considering all the possible
sub-signatures!). That’s why, our method (which seems to be original, and natural since it
describes directly the corresponding subgroup lattices) gives a formula for the total number
of subgroups of a (finite) abelian rank two p-group which, to the best of our knowledge, did
not yet appear in print.
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2 The key result Our key result is antique. It was discovered by Goursat as early
as 1890 (see [6]): it is possible to construct the subgroup lattice of a direct sum out of the
subgroup lattices of the summands, and all the isomorphisms between ”sections” ! A brief
presentation follows (for details see [9]).

(a2) Let U be a subgroup of G = H ⊕K. Then there is natural isomorphism

(U +K) ∩H

U ∩H
≃

(U +H) ∩K

U ∩K
.

Conversely, let G = H ⊕K be a group and W1 ≤ UH ≤ H , W2 ≤ UK ≤ K subgroups of

the direct summands. For every isomorphism δ :
UH

W1
→

UK

W2
there exists a subgroup U ≤ G

such that UH = (U +K) ∩H , UK = (U +H) ∩K, W1 = U ∩H and W2 = U ∩K, namely

U = D(UH , δ) = {x+ y|x ∈ UH , y ∈ δ(x+W1)}.

Thus in order to recover the subgroups of a direct sum H⊕K we need the isomorphisms
between the ”sections” (i.e., intervals in the subgroup lattice) in [0, H ] respectively [0,K].
Therefore we are interested in direct products of isomorphic groups.

Let G = H ⊕K. A subgroup D of G is called a diagonal in G (with respect to H and
K) if D +H = G = D +K and D ∩H = 0 = D ∩K.

If δ : H → K is an isomorphism then D(δ) = D(H, δ) = {x+ δ(x)|x ∈ H} = (1 + δ)(H)
is a diagonal in G (with respect to H and K). Conversely, if D is a diagonal in G (with
respect to H and K) there is a unique isomorphism δ : H → K such that D = D(δ).

More, there is a bijection between the diagonals (with respect to H and K) and isomor-
phisms of H and K. Every subgroup U of a direct sum G = H ⊕K belongs to the direct
product L = L(H) × L(K) (i.e., has the form H ′ ⊕ K ′ for H ′ ≤ H and K ′ ≤ K) or is a
diagonal in a certain section. The situation is best described by the following diagram

G

H K

0

U

U

U+H U+K

U KU H

U
U

0

0
0

0 0

U
H

H

H

U

UU

U U

K

K

K
+ U+U

+ 

+K
+H
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Using the projections from the direct sum, it is readily checked that UH = pH(U) =
(U + K) ∩ H , UK = pK(U) = (U + H) ∩ K, and U0 = (U ∩ H) ⊕ (U ∩ K) ∈ L and
UH ⊕ UK = (U + H) ∩ (U + K) ∈ L. Moreover (see [5] where these are described as
subdirect sums), UH ⊕ UK is minimal in L including U and U0 = (U ∩ H) ⊕ (U ∩ K) is
maximal in L included in U . Here U is a diagonal in (UH ⊕ UK)/U0.

Finally, this allows us to reconstruct, beginning with the direct product of the subgroup
lattices L(H), L(K) all the other subgroups, namely the diagonals, just looking at the
isomorphisms between the ”sections” (which correspond to isomorphic factor groups - i.e.,
intervals in the subgroup lattice).

3 Examples 1) The Klein group G = H⊕K = Z2⊕Z2 = {0, a, b, a+b|2a = 0 = 2b}.
Each L(Z2) is a chain with two elements and the direct product of these two chains is

the four element lattice

Using the key result, we have to add as many diagonals as isomorphisms Z2 → Z2 (i.e.,
H → K). From H = {0, a} to K = {0, b} there is only one isomorphism so only one
diagonal (namely (1 + δ)(H) = {0, a+ b}) has to be added to the direct product.

Hence G has the ”diamond” as subgroup lattice

H K

G

0

D

2) The elementary group G = Z3⊕Z3 = {0, a, 2a, b, 2b, a+ b, a+2b, 2a+ b, 2a+2b|3a=
0 = 3b}.

The same two chains of two elements and four element direct product of lattices.

However, now there are two isomorphisms Z3 → Z3, namely δ :

(

0 a 2a
0 b 2b

)

and

δ′ :

(

0 a 2a
0 2b b

)

. Hence we must add two diagonals D = (1+ δ)(H) = {0, a+ b, 2a+2b}

respectively D′ = (1 + δ′)(H) = {0, a+ 2b, 2a+ b}. The following diagram describes this

G

H K

0

D D’



5

3) The group G = Z2 ⊕ Z4 = {0, a, b, a+ b, 2b, a+ 2b, 3b, a+ 3b|2a = 0 = 4b} has the
subgroup lattice

H

K

D

D’

G

0

2K

H+(2K)

Indeed, to the direct product of chains

we have to add only two diagonals, D corresponding to the isomorphism [0, H ] → [0, 2K]
respectively D′ to the isomorphism [0, H ] → [2K,K].

4) The group G = Z4 ⊕ Z4 = 〈a, b|4a = 4b = 0〉 with cyclic subgroups N = 〈a〉 = 〈3a〉,
M = 〈b〉 = 〈3b〉 has the subgroup lattice

N M

G

0

2M2N

N+V

T

T+M

S U

2S

V

S+U

Once again, we start by two 3-element chains (i.e., of length 2), and the direct product
has 9 elements. For the first time we have here two kind of isomorphisms: four isomorphisms
Z2 → Z2 ([0, 2N ] → [0, 2M ], [0, 2N ] → [2M,M ], [2N,N ] → [0, 2M ], [2N,N ] → [2M,M ])
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respectively two isomorphisms Z4 → Z4 ( [0, N ] → [0,M ] - Z4 has two automorphisms, see
the general formula in the next section), so we add 6 diagonals, 2S, T , V , S +U and S, U ,
for a total of 15 subgroups.

5) The elementary group G = Z2 ⊕ Z2 ⊕ Z2 has the following subgroup lattice

G

0

B

A

In order to recover this by using our key result, we consider H = Z2 with a 2-element
chain subgroup lattice, and K = Z2⊕Z2, with the ’diamond’ subgroup lattice (see Example
1).

We have 2×5 = 10 subgroups in the direct product + 6 diagonals to add, corresponding
to the 6 isomorphisms associated to all the segments in the ’diamond’. That is, 16 subgroups
indeed.

6) The 2-group Z4 ⊕ Z2 ⊕ Z2.

Now we take H = Z4 and K = Z2 ⊕ Z2, so a 3-element chain and the ’diamond’ as
subgroup lattices, as follows

K

0

H

0

2H

A

B

a b c

Hence we have 3 × 5 = 15 subgroups in the direct product, and we must add diago-
nals corresponding to 6 isomorphisms from A = [0, 2H ] to each of the segments on the
’diamond’ and other 6 isomorphisms from B = [2H,H ] to the same 6 segments. That is
15 + 6 + 6 = 27 subgroups.
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Remark. Apparently there would be some isomorphisms from the interval (chain) [0, H ]
to some 3-element chains in the ’diamond’ (namely [0, a,K], [0, b,K] or [0, c,K]). Wrong!
None of these actually is an interval in the subgroup lattice L(K).

7) G = Z2 ⊕ (Z4 ⊕ Z4).

First, the direct product of a 2-element chain and the lattice in Example 5. Thus
2×15 = 30 subgroups in the direct product + as many diagonals as isomorphisms Z2 → Z2.
Now we have as many such isomorphisms as many segments has the lattice L(Z4⊕Z4); this
number is 24. Finally we have 30 + 24 = 54 subgroups.

8) G = Z8 ⊕ (Z2 ⊕Z4) Apparently similar with the previous, this Example emphasizes
a new aspect.

First we have 4 × 8 = 32 subgroups in the direct product + 3 × 11 diagonals for the
corresponding (simple) segments [hereafter also called 1-segments].

H

0 0

K

D’

D
a

b

2H

4H

Next we must count 2-segments (there are no 3-segments which are intervals on the
right lattice): 2 as (long) sides of the right rectangle and the chains (which actually are
also intervals!) [0, a,D′] respectively [D, b,K]. Hence, 2 × 2 × 4 = 16 more diagonals
to be added (2 for [0, 2H ] and [4H,H ], |Aut(Z4)| = 2(2 − 1) = 2 - see also next section,
respectively the 4 2-segments, emphasized above), for a total of 32+33+16 = 81 subgroups.

Here is the GAP diagram:
Index 1

Index 2

Index 4

Index 8

Index 16

Index 32

Index 64

G

1

23 45 67 8

910 1112 1314 1516 1718 19 20 21 22 2324 25 26 27

2829 3031 3233 3435 3637 38 39 40 41 4243 44 45 46 47 48 49 50 51 525354

5556 5758 5960 6162 6364 65 66 67 68 6970 71 72 73

7475 7677 7879 80
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9) G = Z4 ⊕ (Z4 ⊕ Z4) The GAP diagram:

Index 1

Index 2

Index 4

Index 8

Index 16

Index 32

Index 64

G

1

23 45 67 8

910 1112 1314 1516 1718 19 20 21 22 2324 25 26 27 28 29 30 31 32 3334353637383940414243

4445 4647 4849 5051 5253 54 55 56 57 5859 60 61 62 63 64 65 66 67 68697071727374757677787980818283848586

8788 8990 9192 9394 9596 97 98 99 100 101102 103 104 105 106 107 108 109 110 111112113114115116117118119120121

122123 124125 126127 128

Now we take H = Z4 and K = Z4 ⊕ Z4, so a 3-element chain and and the lattice in
Example 5. The latter has 15 subgroups, 24 1-segments and 18 2-segments (6 ”straight” 2
segments and 12 ”skew” segments).

Therefore now we have 3 × 15 = 45 subgroups in the direct product, 2 × 24 = 48
diagonals corresponding to all the Z2 → Z2 isomorphisms (between 1-segments) and 2×18 =
36 diagonals corresponding to all the Z4 → Z4 isomorphisms (between the 2-segments),
noticing that (for the 2) |Aut(Z4)| = 2. So 45 + 48 + 36 = 129 subgroups.

10) G = (Z2 ⊕Z2)⊕ (Z4 ⊕Z4) is the only group of rank four we discuss in this Section.
Consider H = Z2 ⊕Z2 and K = Z4 ⊕Z4 which have as subgroup lattices the ’diamond’

(Example 1) and the lattice L(Z4 ⊕ Z4) from Example 5 which has 15 subgroups and 24
segments.

Hence we have 5 × 15 = 75 subgroups in the direct product, 6 × 24 = 144 diagonals
corresponding to all the Z2 → Z2 isomorphisms (between the 1-segments) and (for the
first time), 5 isomorphisms of ’diamonds’ (indeed, L(Z4 ⊕ Z4) has 5 intervals which are
’diamonds’). That is, 5×|Aut(Z2 ⊕ Z2)| = 5×6 = 30 (since now we need Z2⊕Z2 −→ Z2⊕Z2

isomorphisms, these are the 3! = 6 automorphisms of the Klein group Z2 ⊕ Z2).
So the total is 75 + 144 + 30 = 249 subgroups.
Here the GAP diagram:

Index 1

Index 2

Index 4

Index 8

Index 16

Index 32

Index 64

G

1

23 45 67 89 1011 12 13 14 15 16

1718 1920 2122 2324 2526 27 28 29 30 3132 33 34 35 36 37 38 39 40 4142434445464748495051525354555657585960616263646566676869707172737475

7677 7879 8081 8283 8485 86 87 88 89 9091 92 93 94 95 96 97 98 99 100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174

175176 177178 179180 181182 183184 185 186 187 188 189190 191 192 193 194 195 196 197 198 199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233

234235 236237 238239 240241 242243 244 245 246 247 248

4 The rank 2 formula

Diagonals, segments and automorphisms.

In what follows, ’segment’ on the diagram that represents a given subgroup lattice has
the usual geometric meaning and, as it is well-known, is drawn whenever a subgroup S is
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covered by another subgroup T (i.e., T/S is simple). Moreover, the term ’interval’ (we have
finally preferred it to the synonymous ’section’) is used as follows: if S, T are subgroups of
G, the interval [S, T ] = {U ∈ L(G)|S ≤ U ≤ T }. As previously noted, this is generally not
a chain (excepting cocyclic groups) nor a ’diamond’.

Notice that counting segments may be done by counting the segments in the direct
product and adding 2 times the number of diagonals (obviously, each diagonal ’comes’ with
exactly two 1-segments - in producing the corresponding ’diamond’). For later purposes, the
two 1-segments adjacent to a diagonal will be called half-diagonals (thus, diagonal means a
subgroup, and half-diagonal means an 1-segment).

Recall (e.g. see [5]) that |Aut(Zn)| = ϕ(n) the Euler (arithmetic) function. Thus

|Aut(Zpt)| = ϕ(pt) = pt(1−
1

p
) = pt−1(p−1) gives the number of isomorphisms between

two intervals of the form [0,Zpt ] (i.e., chains of length t).

The formula.

In what follows we shall prove the formula giving the total number of subgroups for a
(finite) rank two p-group.

Set G = Zpt ⊕ Zpk for arbitrary positive integers t and k.
First of all, we have the direct product of chains of length t respectively k, that is,

(t+1)(k+1) subgroups. Next, we have the diagonals corresponding to the automorphisms
Zp → Zp, which give p− 1 diagonals for each pair of 1-segments, i.e., tk(p− 1).

Further, the diagonals corresponding to the automorphisms Zp2 → Zp2 , which give
p(p− 1) diagonals for each pair of (double) adjacent segments (2-segments). So (t− 1)(k−
1)p(p− 1) diagonals have to be added.

We must continue till we exhaust the adjacent min(t, k)-length segments, which obvi-
ously is the chain L(H) or the chain L(K) (corresponding to t ≤ k respectively k ≤ t). This
chain produces |k − t|+ 1 pairs of chains of length min(t, k), each giving pmin(t,k)−1(p− 1)
diagonals.

Therefore the total number of subgroups is

(t+ 1)(k + 1) + tk(p− 1) + (t− 1)(k − 1)p(p− 1) + ...

...+ 2(|k − t|+ 2)pmin(t;k)−2(p− 1) + (|k − t|+ 1)pmin(t;k)−1(p− 1).

In what follows a special sum will be used. For t ≤ k denote by

Stk =

t−1
∑

i=0

(t− i)(k − i)pi

Considering the polynomial f = 1 +X +X2 + ...+Xt−1 ∈ Z[X ], this sum is

Stk = tkf(p)− (t+ k)pf ′(p) + p[(Xf ′(X))′](p)

(here f ′(X) =
(t− 1)Xt − tXt−1 + 1

(X − 1)2
and
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(Xf ′(X))′ =
(t− 1)2Xt+1 − (2t2 − 2t− 1)Xt + t2Xt−1 −X − 1

(X − 1)3
).

Hence Stk is calculated as follows:

tk
pt − 1

p− 1
−(t+k)p

(t− 1)pt − tpt−1 + 1

(p− 1)2
+p

(t− 1)2pt+1 − (2t2 − 2t− 1)pt + t2pt−1 − p− 1

(p− 1)3
,

or
pt+2(k − t+ 1) + pt+1(t− k + 1)− (t+ 1)(k + 1)p2 + (2tk + t+ k − 1)p− tk

(p− 1)3
.

Moreover, for two arbitrary positive integers[correction!] t ≤ k denote by S
tk

=
Smin(t;k),max(t;k).

Then we obtain
N(Zpt ⊕ Zpk) = (t+ 1)(k + 1) + (p− 1)S

tk

or finally

(t+ 1)(k + 1) +

+
pt+2(|k − t|+ 1) + pt+1(1− |k − t|)− (t+ 1)(k + 1)p2 + (2tk + t+ k − 1)p− tk

(p− 1)2

= (t+ 1)(k + 1) +
pt+2(|k − t|+ 1) + pt+1(1− |k − t|)− p− [(t+ 1)p− t][(k + 1)p− k]

(p− 1)2
.

[correction! since t ≤ k actually |k − t| = k − t]

[added in proof: a double division by p− 1 gives also

= (t+1)(k+1)+ p[(k− t)(pt−1 + ...+ p+1)+ pt−1 +3pt−2 + ...+(2t− 3)p+(2t− 1)]− tk

with special case t = k = 2 given by

N(Zpt ⊕ Zpk) = (t+ 1)(k + 1) + 4(p− 1) + p(p− 1)

Indeed, one counts 9 subgroups in the direct product of chains, 4(p − 1) atoms in each
square and another p(p− 1) =

∣

∣Aut(Zp2 )
∣

∣, as on the following diagram

. . . . . . . .

. . .. . .

. . . .

. .. . . .

r s

Fig. 5
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Remarks.- As for (finite) rank three p-groups, the use of the same ’key’ result is possible
but complicated (the previous presented Examples suggest which are the difficulties). It
will be done elsewhere.

However, subgroups of a direct sum of three groups were already described in 1931 by
Remak (see [8]). Actually this is a difficult paper to read (some 156 equations describe
finally the corresponding ’key’ result !).

The use of the corresponding isomorphism (for direct sum of two groups this was (a2) in
our second Section) is more effective in giving the formula for the total number of subgroups
for a rank three p-group:

(a3) Let G = H1 ⊕H2 ⊕H3 and U be a subgroup of G. There is natural isomorphism

(L1 ⊕ L2 ⊕ L3) + U

L1 ⊕ L2 ⊕ L3

∼=
U

N1 +N2 +N3

using the notations:

B1 = H1∩(U+(H2⊕H3)), A12 = (U+H1)∩H2, K1 = (U+H1)∩(H2⊕H3), C1 = U∩H1,
D1 = U ∩ (H2 ⊕H3), L1 = A12 ∩ A13, M1 = A12 + A13, N1 = D1 ∩ (A12 ⊕ A13), and the
other combinations interchanging indexes 1,2,3.

One has to write the converse (as for the two summands case) and to establish the
corresponding bijection between subgroups and isomorphism of intervals. This gives, in a
similar way, the total number of subgroups.

5 Elementary abelian groups; recurrences. Any finite elementary p-group, is repre-
sented as

Zn
p =

⊕

n

Zp

for a positive integer n.

Denote by N(Zn
p ) its total number of subgroups and by n(1−seg(L(Zn

p ))) the number
of 1-segments the subgroup lattice L(Zn

p ) has. Using the Gaussian coefficients, one can

define the Galois numbers Gn,p =

n
∑

k=0

[

n
k

]

p

. Recall that for these numbers there is only

a recursion (and no formula):

for all N ∈ N and p prime (power)

G0,p = 1, G1,p = 2,

Gn+1,p = 2Gn,p + (pn − 1)Gn−1,p.

Since Zn
p is an n -dimensional vector space over Zp,

[

n
k

]

p

gives the number of sub-

groups of dimension (rank) k, respectively, Gn,p gives the total number of subgroups, i.e.

N(Zn
p ) = Gn,p.
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Using our ’key result’ , #Aut(Zp) = p− 1 and Zn
p = Zp ⊕ Zn−1

p , that is L(Zp) a chain
with 2 elements, by counting the subgroups in the direct (lattices) product, respectively the
diagonals, we obtain

N(Zn
p ) = 2N(Zn−1

p ) + (p− 1)n(1−seg(L(Zn−1
p ))).

Consequence.
n(1−seg(L(Zn

p ))) =
1

p−1 [N(Zn+1
p )− 2N(Zn

p )] =
1

p−1 [Gn+1,p − 2Gn,p] =
pn−1
p−1 Gn−1,p.

Hence
n(1−seg(L(Zn

p ))) = (pn−1 + pn−2 + ...+ p+ 1)Gn−1,p.

Finally, we mention another straightforward recurrence one obtains by using the same
’key result’ : each finite p-groupG can be viewed as Zpl⊕G′ where G′ is a (finite) direct sum
of (finite) cocyclics, of order larger or equal to pl. If we know how to count the 1-segments,
2-segments, ..., the l-segments in L(G′) obviously the total number of subgroups is obtained
adding (hereafter n(u− seg) denotes the number of u-segments in G′):

l(p− 1)n(1− seg) diagonals corresponding to isomorphisms Zp → Zp;
+(l − 1)p(p− 1)n(2− seg) diagonals corresponding to isomorphisms Zp2 → Zp2 ;
+(l − 2)p2(p− 1)n(3− seg) diagonals corresponding to isomorphisms Zp3 → Zp3 ;
...
+2pl−2(p− 1)n((l− 1)− seg) diagonals corresponding to isomorphisms Zpl−1 → Zpl−1 ;
+pl−1(p− 1)n(l− seg) diagonals corresponding to isomorphisms Zpl → Zpl .

Hence
N(Zpl⊕G′) = l(p−1)n(1− seg)+(l−1)p(p−1)n(2− seg)+(l−2)p2(p−1)n(3− seg)+...
... + 2pl−2(p − 1)n((l− 1)− seg) + pl−1(p − 1)n(l− seg)+ number of subgroups in the

direct product.
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