GCD domains

Wikipedia, PlanetMath

March 12, 2020

A GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).

A GCD domain generalizes a unique factorization domain (UFD) to a non-Noetherian setting in the following sense: an integral domain is a UFD if and only if it is a GCD domain satisfying the ascending chain condition on principal ideals (and in particular if it is Noetherian).

GCD domains appear in the following chain of class inclusions:
commutative rings \supset integral domains \supset integrally closed domains GCD domains \supset unique factorization domains \supset principal ideal domains \supset Euclidean domains \supset fields \supset finite fields.

PlanetMath.

Let D be a GCD domain. For any $a \in D$, denote $[a]$ the set of all elements in D that are associates of $a, \operatorname{GCD}(a, b)$ the set of all gcd's of elements a and b in D, and any $S \subseteq D, m S:=\{m s \mid s \in S\}$. Then

Lemma 1 1. $G C D(a, b)=[a]$ iff $a \mid b$.
2. $m G C D(a, b)=G C D(m a, m b)$.
3. If $G C D(a b, c)=[1]$, then $G C D(a, c)=[1]$.
4. If $G C D(a, b)=[1]$ and $G C D(a, c)=[1]$, then $G C D(a, b c)=[1]$.
5. If $G C D(a, b)=[1]$ and $a \mid b c$, then $a \mid c$.

Proof. To aid in the proof of these properties, let us denote, for $a \in D$ and $S \subseteq D, a \mid S$ to mean that every element of S is divisible by a, and $S \mid a$ to mean that every element in S divides a. We take the following five steps:

1. One direction is obvious from the definition. So now suppose $a \mid b$. Then $a \mid G C D(a, b)$. But by definition, $G C D(a, b) \mid a$, so $[a]=G C D(a, b)$.
2. Pick $d \in G C D(a, b)$ and $x \in G C D(m a, m b)$. We want to show that $m d$ and x are associates. By assumption, $d \mid a$ and $d \mid b$, so $m d \mid m a$ and $m d \mid m b$, which implies that $m d \mid x$. Write $x=m n$ for some $n \in D$. Then $m n \mid m a$ and $m n \mid m b$ imply that $n \mid a$ and $n \mid b$, and therefore $n \mid d$ since d is a gcd of a and b. As a result, $m n \mid m d$, or $x \mid m d$, showing that x and $m d$ are associates. As a result, the map $f: m G C D(a, b) \rightarrow G C D(m a, m b)$ given by $f(d)=m d$ is a bijection.
3. If $d \mid a$ and $d \mid c$, then $d \mid a b$ and $d \mid c$. So $d \mid G C D(a b, c)=[1]$, hence d is a unit and the result follows.
4. Suppose $d \mid a$ and $d \mid b c$. Then $d \mid a b$ and $d \mid b c$ and hence $d \mid$ $G C D(a b, b c)=b G C D(a, c)=[b]$. But $d \mid a$ also, so $d \mid G C D(a, b)=[1]$ and d is a unit.
5. $G C D(a, b)=[1]$ implies $[c]=G C D(a c, b c)$. Now, $a \mid a c$ and by assumption, $a \mid b c$. Therefore, $a \mid G C D(a c, b c)=[c]$.

The second property above can be generalized to arbitrary integral domain: let D be an integral domain, $a, b \in D$, with $G C D(a, b) \neq \emptyset \neq$ $G C D(m a, m b)$, then $d \in G C D(a, b)$ iff $m d \in G C D(m a, m b)$.

Proposition 2 Every $G C D$ domain is integrally closed.
Proof. Let D be a GCD domain. For any $a, b \in D$, let $G C D(a, b)$ be the collection of all gcd's of a and b. For this proof, we need (2) and (5) in the above lemma.

For convenience, let $\operatorname{gcd}(a, b)$ be any one of the representatives in $G C D(a, b)$.
Let K be the field of fraction of D, and $a / b \in K(a, b \in D$ and $b \neq 0)$ is a root of a monic polynomial $p(x) \in D[x]$. We may, from property (1) above, assume that $\operatorname{gcd}(a, b)=1$. Write

$$
f(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0} .
$$

So we have

$$
0=(a / b)^{n}+c_{n-1}(a / b)^{n-1}+\cdots+c_{0} .
$$

Multiply the equation by b^{n} then rearrange, and we get

$$
-a^{n}=c_{n-1} b a^{n-1}+\cdots+c_{0} b^{n}=b\left(c_{n-1} a^{n-1}+\cdots+c_{0} b^{n-1}\right)
$$

Therefore, $b \mid a^{n}$. Since $\operatorname{gcd}(a, b)=1,1=\operatorname{gcd}\left(a^{n}, b\right)=b$, by repeated applications of property (4), and one application of property (2) above. Therefore b is an associate of 1 , hence a unit and we have $a / b \in D$.

Recall the following
Definitions. A Schreier domain, named after Otto Schreier, is an integrally closed domain where every nonzero element is primal; i.e., whenever x divides $y z, x$ can be written as $x=x_{1} x_{2}$ so that x_{1} divides y and x_{2} divides z. An integral domain is said to be pre-Schreier if every nonzero element is primal. A GCD domain is an example of a Schreier domain. The term "Schreier domain" was introduced by P. M. Cohn in [1]. The term "pre-Schreier domain" is due to Muhammad Zafrullah (see [2]).

In general, an irreducible element is primal if and only if it is a prime element. Consequently, in a Schreier domain, every irreducible is prime. In particular, an atomic Schreier domain is a unique factorization domain; this generalizes the fact that an atomic GCD domain is a UFD.

Finally
Proposition 3 Every GCD domain is a Schreier domain.
Proof. That a GCD domain is integrally closed is clear from the previous proposition. We need to show that D is pre-Schreier, that is, every non-zero element is primal. Suppose c is non-zero in D, and $c \mid a b$ with $a, b \in D$. Let $r=\operatorname{gcd}(a, c)$ and $r t=a, r s=c$. Then $1=\operatorname{gcd}(s, t)$ by property (2) above. Next, since $c \mid a b$, write $c d=a b$ so that $r s d=r t b$. This implies that $s d=t b$. So $s \mid t b$ together with $\operatorname{gcd}(s, t)=1$ show that $s \mid b$ by property (5). So we have just shown the existence of $r, s \in D$ with $c=r s, r \mid a$ and $s \mid b$. Therefore, c is primal and D is a Schreier domain.

References

[1] P. M. Cohn Bezout rings and their subrings. Proc. Camb. Phil. Soc. 64 (1968), 251-264.
[2] M. Zafrullah On a property of pre-Schreier domains. Comm. Algebra 15 (9) (1987), 1895-1920.

