GCD domains

Wikipedia, PlanetMath

March 12, 2020

A GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).

A GCD domain generalizes a unique factorization domain (UFD) to a non-Noetherian setting in the following sense: an integral domain is a UFD if and only if it is a GCD domain satisfying the ascending chain condition on *principal ideals* (and in particular if it is Noetherian).

GCD domains appear in the following chain of class inclusions:

commutative rings \supset integral domains \supset integrally closed domains \supset GCD domains \supset unique factorization domains \supset principal ideal domains \supset Euclidean domains \supset fields \supset finite fields.

PlanetMath.

Let D be a GCD domain. For any $a \in D$, denote [a] the set of all elements in D that are associates of a, GCD(a, b) the set of all gcd's of elements a and b in D, and any $S \subseteq D$, $mS := \{ms \mid s \in S\}$. Then

Lemma 1 1. GCD(a, b) = [a] iff $a \mid b$.

2. mGCD(a, b) = GCD(ma, mb).

3. If GCD(ab, c) = [1], then GCD(a, c) = [1].

- 4. If GCD(a, b) = [1] and GCD(a, c) = [1], then GCD(a, bc) = [1].
- 5. If GCD(a, b) = [1] and $a \mid bc$, then $a \mid c$.

Proof. To aid in the proof of these properties, let us denote, for $a \in D$ and $S \subseteq D$, $a \mid S$ to mean that every element of S is divisible by a, and $S \mid a$ to mean that every element in S divides a. We take the following five steps:

1. One direction is obvious from the definition. So now suppose $a \mid b$. Then $a \mid GCD(a, b)$. But by definition, $GCD(a, b) \mid a$, so [a] = GCD(a, b).

2. Pick $d \in GCD(a, b)$ and $x \in GCD(ma, mb)$. We want to show that md and x are associates. By assumption, $d \mid a$ and $d \mid b$, so $md \mid ma$ and $md \mid mb$, which implies that $md \mid x$. Write x = mn for some $n \in D$. Then $mn \mid ma$ and $mn \mid mb$ imply that $n \mid a$ and $n \mid b$, and therefore $n \mid d$ since d is a gcd of a and b. As a result, $mn \mid md$, or $x \mid md$, showing that x and md are associates. As a result, the map $f : mGCD(a, b) \to GCD(ma, mb)$ given by f(d) = md is a bijection.

3. If $d \mid a$ and $d \mid c$, then $d \mid ab$ and $d \mid c$. So $d \mid GCD(ab, c) = [1]$, hence d is a unit and the result follows.

4. Suppose $d \mid a$ and $d \mid bc$. Then $d \mid ab$ and $d \mid bc$ and hence $d \mid GCD(ab, bc) = bGCD(a, c) = [b]$. But $d \mid a$ also, so $d \mid GCD(a, b) = [1]$ and d is a unit.

5. GCD(a, b) = [1] implies [c] = GCD(ac, bc). Now, $a \mid ac$ and by assumption, $a \mid bc$. Therefore, $a \mid GCD(ac, bc) = [c]$.

The second property above can be generalized to arbitrary integral domain: let D be an integral domain, $a, b \in D$, with $GCD(a, b) \neq \emptyset \neq$ GCD(ma, mb), then $d \in GCD(a, b)$ iff $md \in GCD(ma, mb)$.

Proposition 2 Every GCD domain is integrally closed.

Proof. Let D be a GCD domain. For any $a, b \in D$, let GCD(a, b) be the collection of all gcd's of a and b. For this proof, we need (2) and (5) in the above lemma.

For convenience, let gcd(a, b) be any one of the representatives in GCD(a, b).

Let K be the field of fraction of D, and $a/b \in K$ $(a, b \in D \text{ and } b \neq 0)$ is a root of a monic polynomial $p(x) \in D[x]$. We may, from property (1) above, assume that gcd(a, b) = 1. Write

$$f(x) = x^{n} + c_{n-1}x^{n-1} + \dots + c_{0}.$$

So we have

$$0 = (a/b)^n + c_{n-1}(a/b)^{n-1} + \dots + c_0.$$

Multiply the equation by b^n then rearrange, and we get

$$-a^{n} = c_{n-1}ba^{n-1} + \dots + c_{0}b^{n} = b(c_{n-1}a^{n-1} + \dots + c_{0}b^{n-1}).$$

Therefore, $b \mid a^n$. Since gcd(a, b) = 1, $1 = gcd(a^n, b) = b$, by repeated applications of property (4), and one application of property (2) above. Therefore b is an associate of 1, hence a unit and we have $a/b \in D$.

Recall the following

Definitions. A Schreier domain, named after Otto Schreier, is an integrally closed domain where every nonzero element is primal; i.e., whenever x divides yz, x can be written as $x = x_1x_2$ so that x_1 divides y and x_2 divides z. An integral domain is said to be pre-Schreier if every nonzero element is primal. A GCD domain is an example of a Schreier domain. The term "Schreier domain" was introduced by P. M. Cohn in [1]. The term "pre-Schreier domain" is due to Muhammad Zafrullah (see [2]).

In general, an irreducible element is primal if and only if it is a prime element. Consequently, in a Schreier domain, every irreducible is prime. In particular, an atomic Schreier domain is a unique factorization domain; this generalizes the fact that an atomic GCD domain is a UFD.

Finally

Proposition 3 Every GCD domain is a Schreier domain.

Proof. That a GCD domain is *integrally closed* is clear from the previous proposition. We need to show that D is *pre-Schreier*, that is, every non-zero element is primal. Suppose c is non-zero in D, and $c \mid ab$ with $a, b \in D$. Let $r = \gcd(a, c)$ and rt = a, rs = c. Then $1 = \gcd(s, t)$ by property (2) above. Next, since $c \mid ab$, write cd = ab so that rsd = rtb. This implies that sd = tb. So $s \mid tb$ together with $\gcd(s, t) = 1$ show that $s \mid b$ by property (5). So we have just shown the existence of $r, s \in D$ with $c = rs, r \mid a$ and $s \mid b$. Therefore, c is primal and D is a Schreier domain.

References

- P. M. Cohn Bezout rings and their subrings. Proc. Camb. Phil. Soc. 64 (1968), 251-264.
- M. Zafrullah On a property of pre-Schreier domains. Comm. Algebra 15 (9) (1987), 1895-1920.