A theorem on tridimensional linkage of closed curves

Gheorghe Călugăreanu *

March 4, 1961

Abstract

[French existing in the original paper] On appelle enlacement d 'ordre m un système (C_{1}, \ldots, C_{m}) de m courbes fermées simples, orientées, 2 à 2 disjointes, de 1 'espace euclidien tridimensionel. Dans le cas d 'un enlacement $\left(C_{1}, C_{2}\right)$, ou C_{1} et C_{2} ont en chaque point une tangente qui varie continûment sur la courbe, on appelle tangente d'appui toute tangente à l'une des courbes, qui rencontre l'autre courbe. En appliquant la caractéristique de Kronecker, l 'auteur démontre le théorème suivant: Le nombre des tangentes d'appui de l'enlacement (C_{1}, C_{2}) est au moins égal au quadruple du coefficient d'enlacement $G\left(C_{1}, C_{2}\right)$ donné par l 'intégrale de Gauss.

We call a tridimensional linkage of order m, a system $\left(C_{1}, \ldots, C_{m}\right)$ of m mutually disjoint oriented closed curves, without multiple points, in the 3-dimensional Euclidean space. In the sequel we discuss linkages of order $2,\left(C_{1}, C_{2}\right)$, such that each curve has a tangent in every point which varies continuous along the curve. Any tangent to one of these curves, which intersects the other curve is called supporting tangent. Such tangents do not necessarily exist if the curves are not linked, that is, by a continuous deformation of these, such that the curves remain disjoint, without multiple points, one of them (say C_{1}) can be moved in the interior of a sphere, the other one $\left(C_{2}\right)$ remaining in the exterior. But when C_{1} and C_{2} are linked, the existence of the supporting tangents seems to be necessary.

In what follows we establish a theorem which shows that if the linking coefficient $G\left(C_{1}, C_{2}\right)$, given by the double integral of Gauss, is not zero, the supporting tangents do exist, and their number is at least $4 G\left(C_{1}, C_{2}\right)$. It is known that if $G\left(C_{1}, C_{2}\right)=0$, the curves C_{1} and C_{2} still can be linked, so in this case the theorem below does not establish the existence of the supporting tangents, although these tangents seem to exist with the only condition that C_{1} and C_{2} are linked.

Let s_{1} and s_{2} be the length of the arc on C_{1} and C_{2}, respectively. If $x_{i}=$ $x\left(s_{i}\right), y_{i}=y\left(s_{i}\right), z_{i}=z\left(s_{i}\right)$ are the equations of the curve C_{i} and $\alpha_{i}=\frac{d x_{i}}{d s_{i}}$,

[^0]$\beta_{i}=\frac{d y_{i}}{d s_{i}}, \gamma_{i}=\frac{d z_{i}}{d s_{i}}$ then the supporting tangents will be given by the system
\[

$$
\begin{equation*}
F_{1} \equiv x_{2}-x_{1}-u \alpha_{1}=0, F_{2} \equiv y_{2}-y_{1}-u \beta_{1}=0, F_{3} \equiv z_{2}-z_{1}-u \gamma_{1}=0 \tag{1}
\end{equation*}
$$

\]

where s_{1}, s_{2} and u are the unknowns. In order to compute the number of solutions of this system we shall use the classical formulas deduced with the Kronecker characteristics [1], that is

$$
4 \pi N=\iint \frac{1}{\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right)^{3 / 2}}\left|\begin{array}{cccc}
F_{1} & \frac{\partial F_{1}}{\partial s_{1}} & \frac{\partial F_{1}}{\partial s_{2}} & \frac{\partial F_{1}}{\partial u} \tag{2}\\
F_{2} & \frac{\partial F_{2}}{\partial s_{1}} & \frac{\partial F_{2}}{\partial s_{2}} & \frac{\partial F_{2}}{\partial u} \\
F_{3} & \frac{\partial F_{3}}{\partial s_{1}} & \frac{\partial F_{3}}{\partial s_{2}} & \frac{\partial F_{3}}{\partial u} \\
0 & d s_{2} d u & d u d s_{1} & d s_{1} d s_{2}
\end{array}\right|
$$

where the surface integral is taken on the frontier of the infinite prism $0 \leq s_{1} \leq$ $L_{1}, 0 \leq s_{2} \leq L_{2},-\infty \leq u \leq+\infty$, denoting by L_{i} the length of the curve C_{i}. The number N given in this formula is the algebraic sum of the indexes of the supporting tangents, if by index of such a tangent associated with a solution $\left(s_{1}, s_{2}, u\right)$ of the system (1) we mean the corresponding number $\operatorname{sign} \frac{D\left(F_{1}, F_{2}, F_{3}\right)}{D\left(s_{1}, s_{2}, u\right)}$.

This way one obtains $\frac{D\left(F_{1}, F_{2}, F_{3}\right)}{D\left(s_{1}, s_{2}, u\right)}=u \rho_{1} S \alpha_{2} \alpha_{1}^{\prime \prime}$ with curvature ρ_{1}, the direction of the binormal $\alpha_{1}^{\prime \prime}, \beta_{1}^{\prime \prime} \gamma_{1}^{\prime \prime}$ in the point s_{1} and S, a sum of three similar terms with the written one.

Further, consider the surface generated by the tangents of the curve C_{1}

$$
\begin{equation*}
X=x_{1}+u \alpha_{1}, Y=y_{1}+u \beta_{1}, Z=z_{1}+u \gamma_{1} \tag{3}
\end{equation*}
$$

with parameters s_{1} and u. The direction of the normal is given by $\frac{D(Y, Z)}{D\left(s_{1}, u\right)}=$ $-u \rho_{1} \alpha_{1}^{\prime \prime}$ and $-u \rho_{1} \beta_{1}^{\prime \prime},-u \rho_{1} \gamma_{1}^{\prime \prime}$. In a point where C_{2} intersects this surface, the sign of $S \alpha_{2} \frac{D(Y, Z)}{D\left(s_{1}, u\right)}=-u \rho_{1} S \alpha_{2} \alpha_{1}^{\prime \prime}$ shows that C_{2} crosses the surface by entering the positive side, or conversely, which gives an interpretation of the above index. Moreover, note that N is an isotopy invariant of this linking, because, since the curves C_{1} and C_{2} do not cross in an isotopic deformation, the intersection points of C_{2} with the surface (3), appear or disappear only in pairs, having opposite sign indexes. Formula (2) can be written

$$
\begin{align*}
& 4 \pi N=\iint \frac{\left\lvert\, \begin{array}{c}
x_{2}-x_{1} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right.}{} \left\lvert\, \begin{array}{ll}
& \\
\alpha_{2} d u+u \rho_{1} & \begin{array}{c}
x_{2}-x_{1} \\
\alpha_{1} \\
\alpha_{1}^{\prime}
\end{array} \\
{\left[r_{12}^{2}-2 u\left(\overrightarrow{r_{12}} \overrightarrow{t_{1}}\right)+u^{2}\right]^{3 / 2}} & d u d s_{1}+ \\
x^{3}
\end{array}\right. \\
& \frac{\left(\left|\begin{array}{c}
x_{2}-x_{1} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right|+u \rho_{1}\left|\begin{array}{c}
x_{2}-x_{1} \\
\alpha_{1} \\
\alpha_{1}^{\prime}
\end{array}\right|+u^{2} \rho_{1}\left|\begin{array}{c}
\alpha_{2} \\
\alpha_{1} \\
\alpha_{1}^{\prime}
\end{array}\right|\right) d s_{1} d s_{2}}{\left[r_{12}^{2}-2 u\left(\overrightarrow{r_{12}} \overrightarrow{t_{1}}\right)+u^{2}\right]^{3 / 2}} \tag{4}
\end{align*}
$$

where (to simplify the writing) we wrote only the first column of each determinant.

Since functions $x_{i}\left(s_{i}\right), \alpha_{i}\left(s_{i}\right), \ldots$ are periodic, integrating on the sides of the above prism, the lateral sides contribution is zero, and for the bases of the prism, obtained for $u= \pm \infty$, the contribution is also zero. Hence $N=0$, and so the number of supporting tangents to C_{1}, of positive index, is equal with the number corresponding to the negative index.

The tangents to C_{1} being coherently oriented with the curve C_{1} itself, let us call prior supporting tangent, a tangent to C_{1} such that the supporting point on C_{2}, is situated after the tangency point, that is $u>0$; similarly, we call posterior supporting tangent, one with $u<0$. Since the index changes its sign together with u, we deduce that the number N_{a} of prior supporting tangents is equal to N_{p} the number or posterior supporting tangents.

Finally, let us calculate N_{a}; it suffices to compute the integral (4) on the prism $0 \leq s_{1} \leq L_{1}, 0 \leq s_{2} \leq L_{2}, 0 \leq u \leq+\infty$. The lateral sides have once again zero contribution, and the basis $u=0$ leads to

$$
4 \pi N_{a}=\int_{0}^{L_{1}} \int_{0}^{L_{2}} \frac{1}{r_{12}^{3}}\left|\begin{array}{c}
x_{2}-x_{1} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right| d s_{1} d s_{2}=4 \pi G\left(C_{1}, C_{2}\right),
$$

i.e., precisely the Gauss integral representing the linking coefficient $G\left(C_{1}, C_{2}\right)$.

Therefore we have proved the following
Theorem 1 The number of prior supporting tangents to a curve C_{1} with respect to another curve C_{2} is equal to the linking coefficient and equal to the number of posterior supporting tangents. If the curves are linked, the total number of supporting tangents (regardless of sign) is at least four times their linking coefficient.

If C_{1} and C_{2} confound in a unique curve C, the system (1) has a singular solution $s_{1}=s_{2}, u=0$, which can be avoided, taking the integral with respect to u from $\varepsilon>0$ to $+\infty$ and then taking $\varepsilon \rightarrow 0$. This way, one reaches the invariant K we have defined in [2].

References

[1] Picard E. Traité d 'Analyse, 3^{e} éd., 150-156.
[2] Călugăreanu G. Líntégrale de Gauss et l 'analyse des noeuds tridimensionels, Revue de math. pures et appl., 1959, IV, 5-20.

[^0]: *English translation: made 2010 by his son

