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1 Introduction

An element a in a unital ring R is called nil-clean ([5]) if a = e + t with
idempotent e and nilpotent t, and is called clean ([7]) if a = e + u with
idempotent e and unit u. Since nil-clean rings are clean ([5]) a natural
question stated in [5] (2006) was whether there are nil-clean elements in a
ring which are not clean. It took some time but in [1] (2014) a 2×2 integral
matrix was given as an example of nil-clean matrix which is not clean.
Also in [7] (1977) exchange elements (called suitable) were defined in four

equivalent ways. One one these is: an element a in a ring R is (left) exchange
if there is an idempotent e such that e − a ∈ R(a − a2). It was proved in
[8] that every left exchange element is also right exchange and conversely.
Since clean rings are exchange ([7]), we can ask another natural question:
are there nil-clean elements which are not exchange ?

Recall that a (nil-)clean element is called trivial if its decomposition uses
a trivial idempotent (i.e. 0 or 1). Notice that the trivial nil-clean elements
are the nilpotents or the unipotents (1+ t with nilpotent t), which are clean
and so exchange. Hence in searching for an example of nil-clean element
which is not exchange we may discard the trivial nil-clean elements.
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In the last 3-4 years the following result was circulating in the Ring Theory
community: Let R be any ring, a ∈ R, and suppose that a = e + q where
e2 = e and q2 = 0. Then a is exchange in R.
Therefore, nil-clean 2× 2 matrices over any commutative domain are ex-

change.

Recently, the (above) condition q2 = 0 was improved (see [3]): if e2 = e,
q is nilpotent and eq2 = qeq or q2e = qeq then e + q is exchange. Such
elements were called medium nil-clean.
By the above mentioned result, looking for an example of nil-clean integral

matrix which is not exchange, M2(Z) and subrings of this won’t do. Before
passing toM3(Z), several other attempts can be made, into special subrings
of M3(Z). These were unsuccessful and are roughly discussed in section 2.
Hence it is reasonable to search such an example in M3(Z).
There are two main difficulties in searching for a 3 × 3 integral nil-clean

matrix which is not exchange.
If we start with some nil-clean matrix it is hard to prove it is not exchange

and, if we start with some not exchange matrix it is hard to show it is nil-
clean. Computer aid helps but cannot give a firm answer.
In this note we expose our attempts in trying to answer the question in

the title. In doing so, we also obtain some partial results, results which,
together with several other attempts made by computer, seem to support
the affirmative answer to this question.
To simplify what follows we state the

Conjecture 1.1 Nil-clean 3× 3 integral matrices are exchange.

In Section 3, using a completion theorem proved in [2], and similarity
invariance, we describe the simplest procedure which constructs, up to sim-
ilarity, all nil-clean matrices and verifies if these are exchange or not.
In Section 4, we state and prove some positive results regarding this con-

jecture.
In Section 5, a different attempt was made: starting with some (large

classes of) not exchange 3× 3 matrices A, we list all the 3× 3 nilpotents T ,
and check whether at least one difference A− T is idempotent. None of all
these verifications gave an idempotent difference.
Finally, Section 6 describes several computer programs and their results,

based on Sections 3, 4 and 5, which, to some extent, support the affirmative
answer for our conjecture.
Summarizing, the authors strongly believe that the conjecture has an

affirmative answer.
As stated above, an element a in a ring R is exchange if there exists an

element m ∈ R such that a + m(a − a2) is idempotent. To simplify the
wording m with be called an exchanger for a. We mention that something
analogous exists for exchange elements (see [6]): x is called a suitabilizer for
a via the idempotent f if xa−fx = 1. However, since the set of suitabilizers
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and the set of exchangers may differ, for a given (exchange) element a, we
will use the term exchanger in this paper.
All rings we consider are (associative and) unital.

2 Subrings of M3(Z)

Since the desired counterexamples cannot be found in M2(Z) or subrings,
that is, 4 (integer) variables are not sufficient, another attempt could be
made with 5 variables, namely with a subring of M3(Z) (cross 3× 3 matri-

ces), V = {

[

a 0 b
0 e 0
c 0 d

]

|a, b, c, d, e ∈ Z} , which is ring isomorphic toM2(Z)×Z.

Since (up to isomorphism) this is a direct product, a pair (r, s) ∈ R×S is
idempotent or nilpotent or nil-clean or exchange iff so are both components.
Since exchange (or clean) integers are only {−1, 0, 1, 2} and nil-clean are only
{0, 1}, that is, nil-clean integers are (clean and) exchange, according to the
result mentioned in the introduction, nil-clean matrices in V are exchange.

Next, the natural candidate with 6 variables is the subring T of (upper)
triangular matrices of M3(Z). We can prove

Proposition 2.1 Nil-clean matrices in T are exchange.

Proof. It is easy to see that nontrivial (i.e. different from 03, I3) idempotents

in T are of form E1 =

[

0 b be
0 1 e
0 0 0

]

(if the trace is 1), or E2 =

[

1 b −be
0 0 e
0 0 1

]

(if the

trace is 2), and, nilpotents are precisely the strictly (0 on the diagonal) upper
triangular matrices (the Jacobson radical of T ). Accordingly, nontrivial nil-
clean matrices in T have trace = 1 or 2, determinant = 0 and have the

form A1 =

[

0 b+ β be+ γ
0 1 e+ ε
0 0 0

]

or, A2 =

[

1 b+ β −be+ γ
0 0 e+ ε
0 0 1

]

, with arbitrary

b, e, β, γ, ε,

[

0 β γ
0 0 ε
0 0 0

]

being the (arbitrary) nilpotent.

It is easy to check that for any M ∈ T , Ai+M(Ai−A2

i ) is an idempotent
(of the same type as Ei), and the proof is complete. ⊓⊔

In 7 variables, the subrings

[

Z Z Z

Z Z Z

0 0 Z

]

,

[

Z 3Z Z

3Z Z 3Z
0 0 Z

]

were checked, without

success.
Since we do not know of subrings corresponding to 8 variables, the next

step is indeed trying to find a nil-clean 3× 3 matrix which is not exchange
in the full matrix ring M3(Z), the aim of this exposition.
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3 Nil-clean up to similarity

Since in the sequel we present results which support the conjecture stated
in the introduction, we first describe what should be done in order to prove
it.
In order to diminish the huge amount of nil-clean matrices to start with,

the following results will be useful.

Lemma 3.1 The exchange property for elements in any ring is invariant
to conjugations.

Proof. Let a ∈ R and assume there exists m ∈ R such that e = a+m(a−
a2) = e2. For any unit u ∈ U(R) we show that u−1au is also exchange. In-
deed, for x = u−1mu, a simple computation shows that u−1au+ x[u−1au−
(u−1au)2] = u−1[a+m(a− a2)]u and so the property follows since idempo-
tency is invariant to conjugations. ⊓⊔

As for similarity (the conjugation in square matrix rings), the best result
for our purpose is [9]: every idempotent matrix over a projective-free ring
admits a diagonal reduction. More precisely

Proposition 3.2 Let R be a commutative ring. Then the following are
equivalent:
(1) Every nonzero finitely generated projective R-module is free;
(2) For any idempotent E ∈ Mn(R), there exists W ∈ GLn(R) such that

W−1EW =

[

Ir 0
0 0

]

for some r.

Recall that a commutative ring R is projective-free provided that every
finitely generated projective R-module is free. For instance, every commuta-
tive local ring and every principal ideal domain (e.g. Z) are projective-free.
Therefore, since both nil-clean and exchange are similarity invariants,

when showing that any 3 × 3 nil-clean matrix (over a projective-free ring)
is exchange, we can suppose that the idempotent is E11 or else E11 +E22.
Having this simplification for the idempotents we have to control the 3×3

nilpotent matrices.
This can be done using the following characterization (see [2])

Proposition 3.3 Let R be a (commutative) integral domain and let U be
an arbitrary matrix in M2(R). There is a nilpotent matrix N ∈ M3(R)
which has U as the northwest 2 × 2 corner, whenever there exist elements
a, b, x, y ∈ R such that ax + by = det(U) − Tr(U)2 and bxu12 + ayu21 −
axu22 − byu11 = Tr(U) det(U). Such a matrix exists if (e.g.) u12 or u21 is a
unit.
Conversely, if N is a 3× 3 nilpotent matrix which has U as the northwest

2 × 2 corner, the previous relations hold for a = n13, b = n23, x = n31 and
y = n32.
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Summarizing, starting with any 2×2 matrix U , we use Proposition 3.3 in
order to list the 3× 3 nilpotents T obtained by completion, we add E11 or
E11 +E22 and for the matrix A respectively A′ obtained this way, we have
to find an integral 3× 3 exchanger M such that C = A+M(A−A2) = C2.

In the general case, for a given 3× 3 (nil-clean) matrix A, in order to find
an exchanger M such that C = A + M(A − A2) = C2 we have to solve a
(huge) 9× 9 quadratic system.

4 Positive results

Since solving such a 9× 9 quadratic systems is out of the question, all that
can be done is to study some special cases.
In any special case, the difficulty, for a given class of nil-clean 3×3 matri-

ces, is to find at least one exchanger. In the proofs below, these exchangers
appear as a result of some kind of computational algebra. Using suitable pro-
grams, a lot of examples were observed and finally the rule was extracted
which gives the right exchanger.
The process of covering special cases is slow and difficult. Large room is

left for further research.

We first discuss the special cases mentioned in Proposition 3.3, that is,
when an off-diagonal entry of U is a unit. Below we cover the cases u12 ∈
{±1}.

Theorem 4.1 The following classes of 3×3 nil-clean matrices are exchange:

(i) A = E11 + T =

[

u11 + 1 1 0
u21 u22 1
x m −u11 − u22

]

.

(ii) A′ = E11 +E22 + T =

[

u11 + 1 1 0
u21 u22 + 1 1
x m −u11 − u22

]

.

(iii) A = E11 + T =

[

u11 + 1 −1 0
u21 u22 1
x m −u11 − u22

]

.

(iv) A′ = E11 +E22 + T =

[

u11 + 1 −1 0
u21 u22 + 1 1
x m −u11 − u22

]

.

Proof. We start with a 2 × 2 matrix U =

[

u11 1
u21 u22

]

, completed to a 3 × 3

nilpotent T =

[

u11 1 0
u21 u22 1
x m −u11 − u22

]

(i.e. a = 0, b = 1) where m = detU −

Tr2U = −u2

11
−u2

22
−u11u22−u21, l = detU ·TrU = (u11u22−u21)(u11+u22)
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and x = l+u11m = (u11u22−u21)(u11+u22)−u11(u
2

11
+u2

22
+u11u22+u21) =

−u3

11
− 2u11u21 − u21u22.

(i) First A2 =





(u11 + 1)2 + u21 u11 + u22 + 1 1
u21 − u3

11
− u11u21 −u2

11
− u11u22 −u11

. . .



 where the 3rd

row will play no rôle.

Secondly, A − A2 =

[

−u11(u11 + 1)− u21 −u11 − u22 −1
u3

11
+ u11u21 u2

11
+ u11u22 + u22 1 + u11

. . .

]

.

Take M =

[

0 0 0
1 0 0

−u22 1 0

]

and compute C = A+M(A−A2) =

[

u11 + 1 1 0
−u11(u11 + 1) −u11 0

u3

11
+ u2

11
u22 + u11u21 + u11u22 + u21u22 + x (u11 + u22)

2 + u22 +m 1

]

=

[

u11 + 1 1 0
−u11(u11 + 1) −u11 0

α β 1

]

.

Then C2 =

[

u11 + 1 1 0
−u11(u11 + 1) −u11 0

γ δ 1

]

and for C = C2 we check α = γ and

β = δ. Here γ = (u11 + 1)(α− βu11) + α = α and δ = α − βu11 + β = β,
because α = βu11. Indeed, α = u3

11
+u2

11
+u11u21+u11u22+u21u22−u3

11
−

2u11u21 − u21u22 = u11(u11u22 − u21 + u22) and β = u11u22 + u22 − u21.

(ii) We use the same exchanger M =

[

0 0 0
1 0 0

−u22 1 0

]

.

(iii) The only difference is that we use the exchanger M =

[

0 0 0
1 0 0
u22 1 0

]

.

(iv) We use the same exchanger M =

[

0 0 0
1 0 0
u22 1 0

]

. ⊓⊔

Moreover, the case u21 is a unit, i.e. u21 ∈ {±1} is dealt analogously.

Example. (i) For u11 = u22 = −3, u21 = −1, that is A =

[

−2 1 0
−1 −3 1
18 −26 6

]

we get C =

[

−2 1 0
−6 3 0
−21 7 1

]

= C2.

(ii) A =

[

−2 1 0
−1 −2 1
18 −26 6

]

and C =

[

−2 1 0
−6 3 0
−20 10 1

]

= C2.
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In the sequel, we use the block representation of the 3 × 3 nilpotent,

T =

[

U α
β −t

]

with α =

[

a
b

]

, β = [x y ] and t = Tr(U) = u11 + u22.

Next we deal with the case α = 0, that is a = b = 0.
We came to study this particular case, trying to simplify the computer

programs, this way permitting these to consider only the case a 6= 0 6= b
(which was further equivalently simplified to a, b > 0).
Replacement in the completion equations shows that such nilpotent com-

pletions are possible iff detU = Tr(U) = 0, i.e. iff U2 = 02 (U is a nilpo-
tent 2 × 2 matrix), and in this case β = [x y ] may be chosen arbitrary.
Hence u22 = −u11, u12u21 = −u2

11
, that is, we discuss matrices of form

[

u11 u12 0
u21 −u11 0
x y 0

]

. Notice that since u2

11
= −u12u21, u11 possibly divides u12 or

u21.

Theorem 4.2 Consider the nil-clean matrices A = E11 +

[

u11 u12 0
u21 −u11 0
x y 0

]

.

Such matrices are exchange in the following cases:
(i) u11 = 0.
(ii) u11 6= 0 and
1. u11 divides u12.
2. u11 divides u21.
3. u12 = 1 (or u21 = 1).
4. u11 = u(u+ 1), u12 = u2.

Proof. (i) The case u11 = 0 is easily settled. Then u22 = 0 and at least one of

u12, u21 is zero. Say u21 = 0. Hence A =

[

1 u12 0
0 0 0
x y 0

]

and it is readily checked

that for the exchanger −E33 we get C =

[

1 u12 0
0 0 0
x xu12 0

]

, an idempotent.

(ii) It is readily checked that for u11 6= 0 such matrices are not medium
nil-clean.

Further, A2 =

[

(1 + u11)
2 + u12u21 u12 0
u21 0 0

(1 + u11)x+ u21y u12x+ u22y 0

]

and A−A2 =

=

[

−u11 0 0
0 u22 0

−u11x− u21y −u12x+ (1− u22)y 0

]

=

[

−u11 0 0
0 −u11 0
s t 0

]

if we denote

s = u22x− u21y, t = −u12x+ (1− u22)y.
Using u22 = −u11 we get C = A+M(A−A2) =
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=

[

1 + (1−m11)u11 +m13s u12 −m12u11 +m13t 0
u21 −m21u11 +m23s −(1−m11)u11 +m23t 0
x−m31u11 +m33s y −m32u11 +m33t 0

]

.

Multiple computer tests show that we can always chose m13 = m23 = 0,
m33 = −1, and m11 +m22 = 0. For these values,

C =

[

1 + (1−m11)u11 u12 −m12u11 0
u21 −m21u11 −(1−m11)u11 0
x−m31u11 − s y −m32u11 − t 0

]

=

[

1 + (1−m11)u11 u12 −m12u11 0
u21 −m21u11 −(1−m11)u11 0

x(1 + u11) + u21y −m31u11 u12x− u11y −m32u11 0

]

, which already has

Tr(C) = 1.

We have to deal with the idempotency of a matrix C of form

[

c u 0
d v 0
e w 0

]

where c+ v = 1. It is easily seen that this amounts to the vanishing of the

minors

∣

∣

∣

∣

c u
d v

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

d v
e w

∣

∣

∣

∣

= 0, that is (since u11 6= 0) to

[(1−m11)
2 +m12m21 − 1]u11 = m11 +m12u21 +m21u12 − 1 (1)

which, for every m11, is a quadratic Diophantine equation in m12, m21 and

(1−m11)u11m31 + (u21 −m21)m32 =

= (1−m11)[x(1 + u11) + yu21]− x(u11 +m21u12)− y(u21 −m21u11) (2)

which is a linear Diophantine equation in m31, m32 (after replacing the
solutions found for (1)).
Using (1) and (2), an exchanger was found in the cases given in our

statement.

1. Suppose u12 = ku11. For M =

[

1 k 0
0 −1 0
0 kx− y −1

]

we get the idempotent

C =

[

1 0 0
u21 0 0

x(1 + u11) + u21y 0 0

]

= C2 (matrices of type

[

1 0 0
a 0 0
b 0 0

]

are idempo-

tent for any a, b).

2. Suppose u21 = ku11. ForM =

[

1 0 0
k −1 0

x+ k2 −y −1

]

we get C =

[

1 u12 0
0 0 0
x u12x 0

]

= C2 (matrices of type

[

1 a 0
0 0 0
b c 0

]

are idempotent iff ab = c).

3. If u12 = 1 then u21 = −u2

11
. This case is already covered by Proposition

4.1. An exchanger is M =

[

0 0 0
1 0 0
u11 1 0

]

.
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4. In this case u21 = −(u + 1)2, i.e., A =





u(u+ 1) + 1 u2 0
−(u+ 1)2 −u(u+ 1) 0

x y 0





with arbitrary x, y and an exchanger is M =

[

1− u −u3 0
−1 u− 1 0
x −[1− u(u+ 1)]y −1

]

(see remark 2 below, for more details). ⊓⊔

Remarks. 1) Since u12u21 = −u2

11
, the remaining case when u11 does

not divide u12 nor u21, should be u2

12
= ±q2p, u21 = ∓pr2 and u11 = qpr

with p, q, r two by two coprime (here gcd(u12;u21) = p and we may assume
q 6= ±1 6= r).
So far, it is left open.

2) The special case 4 above arises from a more general situation. Suppose
gcd(u; v) = 1. Then also gcd(u2; v) = 1 and so there exist integers s, t
such that su2 + tv = 1. Very often we can build an exchanger by choosing
m11 = 2− v and m21 = −s.
Actually, here (1) is

(m2

11
− 2m11 +m12m21)uv − u2m21 + v2m12 + 1−m11 = 0

and (2) becomes

(1−m11)um31 − (v +m21u)m32 =

= (1−m11)(xu− yv)− ux+ (v +m21u)y + x
1−m11 −m21u

2

v

where v must divide 1−m11−m21u
2. This explains why we chose m21 = −s:

now 1−m11 −m21u
2 = (1− t)v.

With the selection m11 = 2− v and m21 = −s, (1) becomes just

m12(−su+ v) = −uv(v − 2)− 1 + t.

Since there is no uniqueness for the pair (s, t) it remains to chose a suitable
such pair in order to obtain an integer for m12. It is well-known, that if
(s, t) is a solution for su2 + tv = 1, all the other solutions are given by
(s + kv, t − ku2). Again, very often we can chose (s0, t0) with s0 the least
positive s, solution for su2 + tv = 1.
A special case is precisely 4 in the previous theorem.
This also works, for instance, for (u, v) ∈ {(2, 7), (5, 3)} but does not for

(u, v) = (4, 7). The later has A =

[

29 16 0
−49 −28 0
x y 0

]

and s · 16 + t · 7 = 1 gives

s0 = 4 (t0 = −9), m11 = −5, m21 = −4. Then m12(−16 + 7) = −141− 9 =
−150, has no (integer) solution.
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3) However, the last matrix is covered by another class of exchangers:
those with (2u − v)2 = 1. Indeed, in this case, an exchanger is of form

M =

[

2 1 0
−4 −2 0
. . −1

]

. This covers (u, v) ∈ {(2, 3); (3, 5); (3, 7); (4, 7); (5, 9), ...},

but not (2, 7).

5 A different attempt

Here we used a different strategy: starting with a 3 × 3 matrix A, known
as not being exchange, a program verifies whether a 3 × 3 matrix T exists,
such that T 2 6= 03 = T 3 and A− T is idempotent (i.e. A is nil-clean).
In this procedure, since a characterization of not exchange 3× 3 matrices

is not known so far, we used the following generations of such matrices.
In [6] we can find the following
Theorem 5.12 Let e be an idempotent in a ring R and a = b + ε with

b ∈ S := eRe, ε ∈ Idem(eRe). Then a is exchange in R iff b is exchange in
eRe.
There are two special cases which are related with our research.
1)R = M3(Z) with e = diag(1, 1, 0) = E11+E22 and then e = diag(0, 0, 1)

= E33. In this case we identify S = eRe with M2(Z) and eRe with Z.
2) R = M3(Z) with e = diag(1, 0, 0) = E11 and then e = diag(0, 1, 1) =

E22 +E33. In this case we identify S = eRe with Z and eRe with M2(Z).
This way we obtain the following two consequences.

Corollary 5.1 Let U ∈ M2(Z) and ε ∈ {0, 1} ⊂ Z. Then A =

[

U 0
0 ε

]

is

exchange in M3(Z) iff U is exchange in M2(Z).

Corollary 5.2 Let b ∈ Z and E = E2 ∈ M2(Z). Then A =

[

b 0
0 E

]

is

exchange in M3(Z) iff b is exchange in Z iff b ∈ {−1, 0, 1, 2} ⊂ Z.

When searching for a nil-clean 3 × 3 integral matrix which is not ex-
change, Corollary 5.2 is not useful. Indeed, if E is idempotent in M2(Z),
then Tr(A) ≥ 3 or Tr(A) ≤ 0, so A is not nil-clean.
As for Corollary 5.1, we should know the 2 × 2 matrices which are not

exchange, but since we are looking only for nil-clean 3×3 matrices, we need:
if ε = 0, only 2 × 2 matrices which are not exchange with trace 1 or 2, if
ε = 1, only 2× 2 matrices which are not exchange with trace 0 or 1.

From [4] we mention the following
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Corollary 5.3 The following 3×3 matrices are not exchange for any n ∈ Z,
n ≥ 2:

(a)

[

U 0
0 ε

]

for U ∈

[

nZ+ 1 nZ
nZ nZ+ 1

]

, det(U) /∈ {±1} and ε ∈ {0, 1},

(b)

[

U 0
0 ε

]

for U ∈ M2(nZ), det(U − I2) /∈ {±1} and ε ∈ {0, 1},

(c)

[

b 0
0 E

]

with any 2× 2 idempotent E and b ∈ Z− {−1, 0, 1, 2}.

Thousands of matrices generated as in this corollary were checked. None
was nil-clean.
A program which verifies this is described in the following section.

Many other attempts were made in order to find a nil-clean 3× 3 matrix
which is not exchange.
We just outline here, two of these.

1. Replacing in [2] only the idempotent with

[

1 −1 −1
0 0 0
0 0 0

]

, we get A =

[

2 0 0
−1 1 1
0 −2 −2

]

and A−A2 =

[

−2 0 0
2 2 2
−2 −4 −4

]

= A(I3−A) = 2C which suggests

the following plan for searching an example of nil-clean 3× 3 matrix which
is not exchange: to find a nil-clean matrix A, which has trace = 1 and an
odd (diagonal) minor of order two (so rank 6= 1) such that A−A2 = 2C for
some integral matrix C.
Indeed, it is easy to show that if A ∈ M3(Z) with Tr(A) = 1, A−A2 = 2C

for some integral matrix C and A has an odd (diagonal) minor of order two
then A is not exchange.
However, a long proof shows that there is no nil-clean 3 × 3 matrix with

the properties above.

2. We can nilpotent complete U =

[

1 3
−2 −4

]

with α =

[

2
−1

]

or

[

−2
1

]

and it gives the nilpotents

[

1 3 2
−2 −4 −1
−15 −23 3

]

and

[

1 3 −2
−2 −4 1
15 23 3

]

. Among the

(few) exchangers found, we mention M =

[

−3 4 −5
1 −2 2
2 −1 −2

]

for the first and

M =

[

−3 4 5
1 −2 −2
−2 1 −2

]

for the second.

Notice that the upper-left 2× 2 block is obtained by a rotation of U if we
neglect some signs and α and β are interchanged.
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A program was designed in order to check whether this does happen in
general (and this way, would yield a general proof). Unfortunately, this does
not happen in general.

6 Experimentation software

The previous section describes the procedures we need.
Since Z is an infinite ring, the program cannot exhaust all the 2 × 2 (or

3×3) integral matrices, to start with. All we can do is start with a limitation
for the entries of the matrices. The limit was denoted by (a positive integer)
z, and this means that −z ≤ uij ≤ z for U = (uij).

First about the procedure (called A) which forms all 3 × 3 nil-clean ma-
trices and checks these for the exchange property.
One version follows Proposition 3.3. In order to have a (theoretically)

exhaustive procedure, we have to list all 3× 3 nilpotent matrices, obtained
by completion. That is why we have to consider the compatibility over Z of
the system

ax+ by = m
(bu12 − au22)x+ (au21 − bu11)y = l

where m = det(U)− Tr2(U) and l = det(U) · Tr(U).
For a given z, the program writes all 2 × 2 (integral) matrices U and all

(integral) columns

[

a
b

]

. Then it finds solutions (x, y) for the above system,

that is, constructs all the nilpotent 3 × 3 completions for U , a, b. Then it
adds E11 respectively E11 +E22 and checks the resulting matrices A, A′ for
the exchange property.

Alternatively, and this is the version which finally was chosen, for a given
z, the program writes all 3 × 3 (integral) matrices, selects the matrices T
such that T 3 = 03 6= T 2. Then it adds E11 respectively E11+E22 and checks
the resulting matrices A, A′ for the exchange property.

Remark. For any given pair (a, b) ∈ Z
2, the completion equations above,

form a system of two linear Diophantine equations with unknowns x, y. This
system can be discussed with the Cramer rule and with the compatibility of
a linear Diophantine equation, but the resulting program is too complicated.

Secondly, about the procedure (called B) which starts with not exchange
3× 3 matrices and checks the for the nil-clean property. This was based on
Corollary 5.3, stated in the previous section. Corresponding to (a) or (b),
for a given n and a given z, these not exchange 3 × 3 matrices are checked
for the nil-clean property. As for (c), first all (modulo z) idempotent 2 × 2
are constructed, then these are completed to 3 × 3 with a not exchange
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integer b. Subtracting the nilpotent 3×3 (integral) matrices, the differences
are checked for idempotency.

The computer programs performed a series of tests. The tests were done
with the purpose to find counter-examples or suggest reasoning pathways
for the conjecture.
The search for matrices M is performed incrementally with the nonnega-

tive integer z starting at 0 and incremented by 1 for as long as it is deemed
necessary. For each distinct value of z, only the matrices M with all entries
in the closed interval [−z, z] and with at least one entry of absolute value
equal to z are considered. This iterative search procedure has the ad-
vantage of splitting the set of all integral matrices M into distinct subsets,
covered one at a time.

1. For a given matrix A of order n, with entries in the ring Zk (integers
modulo k), print all the exchangers M , that is, C = A+M(A−A2) = C2.
All the computations were done in Zk. The matrices M are searched
exhaustively.

2. For a given matrix A of order 3, print all the exchangers M .
3. For a given matrix A of order 3, print the total number of exchangers M

and each such matrix M that has at least five zero entries. The search is
limited to all matrices C with entries in absolute value less than a given
threshold z.

4. Find all exchangers M of order 3, with A subject to various constraints.
The iterative search procedure for the matrix M described in item 2 is
performed here.

5. For a given matrix U of order 2, construct the matrices A and A′ of order 3
by nilpotent completion in order to get a nilpotent matrix T with T 2 6= 0
and T 3 = 0. Then find all exchangers M such that A2 6= A. The iterative
search procedure for the matrix M described in item 2 is performed here.

6. As a variation, for all the matrices U of order 2 with entries in absolute
value limited by a given threshold, and with u12 = ±1 use the procedure
described in item 5.

7. As another variation, print all the matrices U of order 2, and the cor-
responding matrices A and A′ for which there is no exchanger M with
entries in absolute value limited by a given threshold, such that A2 6= 03.

8. For a given matrix A of order 3, print all matrices T such that T 3 = 0
and A − T = C = C2. The iterative search procedure for the matrix T
described in item 2 is performed here.

Our final program followed the general procedure described in Section 5.
Basically, we needed to verify the following:

9. For all matrices U of order 2, with entries limited by a given integer k,
and for all integers a > 0 and b > 0 also limited by k, verify that for each
of the matrices A and A′ of order 3 completed as outlined in Section 5
there exists an exchanger M .
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z input exchange output input% exchange% total%

init 43218 38054 5164 100% 88.05%
0 5164 0 5164 11.95% 0% 0%
1 5164 2189 2975 11.95% 42.39% 42.39%
2 2975 1347 1628 6.88% 45.28% 68.47%
3 1628 703 925 3.77% 43.18% 82.09%
4 925 352 573 2.14% 38.05% 88.90%
5 573 167 406 1.33% 29.14% 92.14%
6 406 134 272 0.94% 33.00% 94.73%

Table 1 Results for the program at item 9.

Because of the workload involved by such a testing, we decided to work
incrementally, and consider the list of all combinations (U, a, b,A/A′) for
which an M was not yet determined. As such, at every iteration of the
procedure, the program produces the list of all combinations (U, a, b,A/A′)
that do not have an M determined so far. The program actually verified
the following:

10. Given a list of all combinations (U, a, b,A/A′) to be evaluated, and given
an integer z, print all combinations from the list above for which there is
no exchanger M with the maximal absolute value of entries equal to z.

Out of all the combinations (U, a, b,A/A′) to be evaluated, the program
only deals with those verifying some validity hypotheses, as mentioned in
Section 5.
For matrices U limited by k = 3, this program, running incrementally,

leads to the results in Table 1. There, for each value of z, the column input
indicates the total number of matrices tested for exchange, the column ex-
change indicates the total number of matrices found to be exchange and
the column output indicates the total number of matrices not yet found to
be exchange. Further, column input% indicates the percentage of all the
matrices that are tested at this phase, column exchange% indicates the
percentage of matrices found to be exchange out of all the matrices tested at
this phase, and column total% indicates the percentage of matrices found
to be exchange so far out of all the total number of matrices verifying the
validity hypotheses.
The line marked init shows the prefilter phase, and the data should be

red differently: out of 43128 matrices, 38054 did not verify the validity hy-
potheses, representing 88.05% of the total.
The Table 2 shows the number of matrices for various values of k that

verify the validity hypotheses.

11. For all matrices T of order 3, with entries limited by a given integer k,
and T 3 = 0 6= T 2, verify that for each of the matrices A = T + E11 and
A′ = T +E11 +E22 there exists an exchanger M .

The same incremental approach has been used here. Our results for values
of k equal to 3, 4, 5, 6 are given in Tables 3, 4, 5, and 6 respectively.
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k total valid [%]
1 162 20 12.35%
2 5,000 784 15.68%
3 43,218 5,164 11.95%
4 209,952 19,408 9.24%
5 732,050 48,332 6.60%
6 2,056,392 111,800 5.44%
7 4,961,250 201,420 4.06%
8 10,690,688 376,144 3.52%
9 21,112,002 597,092 2.83%
10 38,896,200 941,200 2.42%

Table 2 Number of matrices verifying the validity hypotheses of item 9.

total matrices T 40,353,607
valid matrices T 12,096 0.02998%

total matrices A, A’ 24,192
matrices not exchange, z = 1 1,312 5.42328%
matrices not exchange, z = 2 128 0.52910%
matrices not exchange, z = 3 0 0.00000%

Table 3 Results for the program at item 10 for k = 3

total matrices T 387,420,489
valid matrices T 38,160 0.00985%

total matrices A, A’ 76320
matrices not exchange, z = 1 9,984 13.08176%
matrices not exchange, z = 2 1,824 2.38994%
matrices not exchange, z = 3 336 0.44025%
matrices not exchange, z = 4 16 0.02096%
matrices not exchange, z = 5 0 0.00000%

Table 4 Results for the program at item 10 for k = 4

total matrices T 2,357,947,691
valid matrices T 73,536 0.00312%

total matrices A, A’ 147072
matrices not exchange, z = 1 25,616 17.41732%
matrices not exchange, z = 2 5,728 3.89469%
matrices not exchange, z = 3 1,312 0.89208%
matrices not exchange, z = 4 192 0.13055%
matrices not exchange, z = 5 16 0.01088%
matrices not exchange, z = 6 0 0.00000%

Table 5 Results for the program at item 10 for k = 5

12. For all matrices T of order 3, with entries limited by a given integer k, and
for a certain given value of n, satifying the hypotheses of Corrolary 10,
verify that there is no matrix T such that T 3 = 0 and A− T = C = C2,
with values limited by a given integer z. The iterative search procedure
for the matrix T described in item 2 is performed here.
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total matrices T 10,604,499,373
valid matrices T 137,472 0.00130%

total matrices A, A’ 274,944
matrices not exchange, z = 1 70,480 25.63431%
matrices not exchange, z = 2 23,328 8.48464%
matrices not exchange, z = 3 6,848 2.49069%
matrices not exchange, z = 4 3,104 1.12896%
matrices not exchange, z = 5 976 0.35498%
matrices not exchange, z = 6 . . . . . .
matrices not exchange, z = 7 . . . . . .

Table 6 Results for the program at item 10 for k = 6

Acknowledgements All the experiments in this paper were performed with C++ pro-
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