Abelian groups whose subgroup lattice is the union of two intervals

Simion Breaz and Grigore Călugăreanu *

Abstract

In this note we characterize the abelian groups G which have two different proper subgroups N and M such that the subgroup lattice $L(G) = [0, M] \cup [N, G]$ is the union of these intervals.

For every subgroup H of an arbitrary group G, the interval [H, G] is a compactly generated (algebraic) sublattice in the subgroup lattice L(G).

After 1989, when Tuma ([4]) showed that every algebraic lattice is isomorphic to an interval in the subgroup lattice of some group (improving Whitman's theorem ([5], 1946) - every lattice is isomorphic to a sublattice of the subgroup lattice of a group - as far as possible), an increasing role of intervals, in subgroup lattices of groups, was noticed.

In [1], an arbitrary group G was called a BP-group if it has a proper subgroup H such that the subgroup lattice L(G) is the union of the intervals [1, H] and [H, G] (i.e., any subgroup of G is either contained in H or contains H). The subgroup H was called a breaking point for the lattice L(G). It was pointed out that the abelian BP-groups are the nonsimple cocyclic groups (i.e., up to isomorphism, $\mathbf{Z}(p^k)$ with k > 1 or ∞).

Roland Schmidt suggested the study of finite groups which satisfy a weaker condition: groups G having two proper subgroups N and M such that every subgroup H of G either contains N or is contained in M. In this situation the subgroup lattice L(G) is again union of two intervals, namely [1, M] and [N, G] (such groups appeared in the study of affinities of groups - see for example **9.4.14** in [3] - but there are much more examples of this kind).

In this paper, instead of finite groups, we characterize the abelian groups which share this property. Our result is the following:

Theorem 1 An abelian group G has two proper subgroups $N \neq M$ such that the subgroup lattice $L(G) = [0, M] \cup [N, G]$ if and only if G is a torsion group with a primary component $G_p \cong \mathbb{Z}(p^n) \oplus B, n \in \mathbb{N}^* \cup \{\infty\}$ such that $p^l B = 0$ holds for a nonnegative integer l < n.

Additive notation is used and from now on, "group" means "abelian group". N denotes the set of all nonnegative integers, **P** denotes the set of all prime numbers and standard interval notation is used. $h_p(b)$ denotes the *p*-height of *b*.

^{*}Keywords: subgroup lattice, interval, torsion abelian group, cocyclic groups. AMS classification: 06 C 99, 20 K 10, 20 K 27

We first mention the following simple

Necessary condition: N must be cyclic. Indeed, take $x \in G \setminus M$. Then $\langle x \rangle \in [0, M]$ being not possible, $\langle x \rangle \in [N, G]$ or $N \leq \langle x \rangle$.

Next, notice there are three distinct possibilities with respect to subgroups N and M:

(A) N and M are not comparable;

 $(\mathbf{B}) \ M < N;$

(C) N < M (e.g., the above mentioned example [3]).

1 Abelian groups with (A)

In this section we suppose M and N not comparable and $L(G) = [0, M] \cup [N, G]$. In this case $[0, M] \cap [N, G] = \emptyset$ (otherwise $N \leq M$). The following remarks are straightforward

(a) $M \cap N$ is the largest element in [0, N) and M + N is the smallest element in (M, G].

(b) $L(M + N) = [0, M] \cup [N, N + M]$, i.e., N + M has property (A).

(c) $L(G/(M \cap N)) = [0, M/(M \cap N)] \cup [N/(M \cap N), G/(M \cap N)]$, i.e., $G/(M \cap N)$ has property (A).

(d) $(M+N)/(M\cap N)$ has property (A).

Actually, more can be proved

Lemma 1.1 If $L(G) = [0, M] \cup [N, G]$, there is a prime number p such that

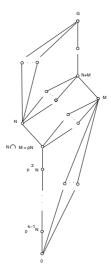
(a) N is a (co)cyclic p-group and $M \cap N = pN$ is maximal in N;

(b) G/M and G/(M+N) are p-groups.

Proof. (a) We have already noticed that N has to be cyclic. By the above remark (a), N is a (co)cyclic p-group (for a suitable prime number p). Moreover, since $M \cap N$ is its largest (proper) subgroup, $pN = M \cap N$.

To prove (b), we observe that G/M is a cocyclic group since it has a smallest subgroup, namely (M + N)/M. Moreover, since $(M + N)/M \cong N/(N \cap M) \cong \mathbb{Z}(p)$, G/M is a cocyclic *p*-group, and so G/(M + N) has the same property. \Box

Therefore the subgroup lattice is represented by the following diagram [u1.eps]



If $N \simeq \mathbf{Z}(p^k)$ it is readily seen that for k = 1, N is minimal and hence the sum N + M is direct (otherwise $N \cap M = N$ and N, M are comparable). Actually this is the only case $N \cap M = 0$.

The following lemma will be used in the proofs of the main results of both this and next sections.

Lemma 1.2 For a group G and $g \in G$ let p be a prime such that $K = G/\langle g \rangle$ is cocyclic p-group. If $h_p(g) \neq 0$ and G is not infinite cyclic, then $G = H_1 \oplus H_2$ for cocyclic p-group H_1 and finite cyclic group H_2 of coprime order with p such that $H_2 \leq \langle g \rangle$ ($H_2 = 0$ is not excluded).

Proof. Since for cocyclic group G the decomposition is trivial, suppose G is not cocyclic (and so $g \neq 0$). As $r(G) \leq r(K) + r(\langle g \rangle) = 2$, we have r(G) = 2 and by $r_0(G) = r_0(\langle g \rangle) + r_0(K) \leq 1$, we obtain $G = H_1 \oplus H_2$ with $r(H_1) = r(H_2) = 1$ - i.e., each H_i is cocyclic or infinite cyclic (if $r_0(G) = 1$, the torsion subgroup of G is cocyclic, hence G splits). If $g = h_1 + h_2$ with $h_i \in H_i$, since $h_p(g) \geq 1$, there exist $x_1 \in H_1$ and $x_2 \in H_2$ such that $px_1 = h_1$ and $px_2 = h_2$. Moreover, $L(G/\langle g \rangle)$ is a chain and we can suppose $x_2 + \langle g \rangle \in (\langle x_1 \rangle + \langle g \rangle)/\langle g \rangle$.

Thus $x_2 \in \langle x_1 \rangle + \langle g \rangle$ and $x_2 = sx_1 + tg$ or $px_2 = spx_1 + tpg$ for suitable integers s, t. Hence $h_2 = sh_1 + tp(h_1 + h_2)$ and, the sum $H_1 \oplus H_2$ being direct, $(tp - 1)h_2 = 0$.

If $h_2 = 0$ then $g \in H_1$ and K is cocyclic if and only if $\langle g \rangle = H_1$ or $H_2 = 0$. In the first case $h_p(g) = 0$, hence $H_2 = 0$ and $G = H_1$ is a cocyclic *p*-group (since, by hypothesis, G is not infinite cyclic).

If $h_2 \neq 0$, the order of h_2 (say l) is finite and coprime with p. Therefore H_2 is a cocyclic q-group (if l is a power of the prime q) and this implies $H_2 \leq \langle g \rangle$ (otherwise $G/\langle g \rangle$ is not p-group). Hence there exists a nonzero integer k such that $h_2 = kh_1 + kh_2$, and so $kh_1 = 0$. Then H_1 is also cocyclic and necessarily a p-group. \Box

Here is the structure theorem for case (A):

Theorem 1.1 A group G satisfies (A) if and only if G is torsion with a cocyclic primary component and r(G) > 1.

Proof. According to Lemma 1.1, let p be a prime such that $N = \langle a \rangle$ is cyclic of order p^k . If $m \in M \setminus N$ then $m + a \notin M$ (since $a \notin M$) and $N \leq \langle m + a \rangle$. Since $N \neq 0$ is torsion, m + a and therefore m are of finite order. Hence M and, together with G/M, G are torsion.

Further, we show that $M_p \subseteq N$. Indeed, if $m \in M_p$, again, $N \subseteq \langle a + m \rangle$ so that a = s(a + m) and $(1 - s)a = sm \in N \cap M = pN$ for a suitable nonzero integer s. Thus $s \equiv 1 \pmod{p}$ and let t be an inverse of s modulo the order of $m \in M_p$. Thus $m = tsm = t(1 - s)a \in N$.

Now, N and M being not comparable, $M_p \subset N$ and hence $pN = M \cap N = M_p \cap N = M_p$.

Since $M_p = pN \leq G_p$, Lemma 1.2 shows that G_p is a cocyclic group.

Conversely, suppose $G = G_p \oplus K$ with $G_p \simeq \mathbf{Z}(p^l)$, $K \neq 0$, $K_p = 0$ and take $N = G_p[p] = \langle a \rangle$ and M = K. If H is a subgroup of G such that $H \nleq K$ we show $N \leq H$.

Indeed, since $H \nleq K$, there is an element $h \in H \setminus K$. If this element decomposes as $h = g_p + k \ (g_p \in G_p, \ k \in K)$, then $g_p \neq 0$ and for a suitable multiple $p^s h = p^s(g_p + k)$ we have $0 \neq p^s g_p \in N$ respectively $p^s k \in K$. Since K is torsion and $K_p = 0$, denoting by u the order of $p^s k$, u and p are coprime and $up^s g_p \in H$. Finally, $p^s g_p \in H$ and thus $N = \langle p^s g_p \rangle \leq H$. \Box

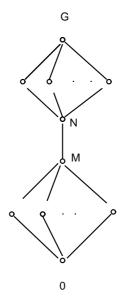
Remarks. 1) The referee pointed out that a proof in Case (\mathbf{A}) can be reduced to the proof of Case (\mathbf{B}) using Lemma 1.1. Our proof uses Lemma 1.2 in both cases.

2) With above notations, $G/M = \bigoplus_{q \in \mathbf{P}} (G_q/M_q)$ is a *p*-group. Hence $G_q = M_q$ for all

primes $q \neq p$ and $M = pN \oplus \bigoplus_{q \neq p, q \in \mathbf{P}} G_q$.

2 Abelian groups with (B)

Now we deal with subgroup lattices of the following type [a1.eps]



Here again $[0, M] \cap [N, G] = \emptyset$.

Although the following result was already stated in [1], we supply a specific "abelian" proof:

Lemma 2.1 G is an abelian BP-group if and only if there is a prime p and $k \in \mathbb{N}^* \cup \{\infty\}$, $k \ge 2$ such that $G \simeq \mathbb{Z}(p^k)$.

Proof. If $L(G) = [0, H] \cup [H, G]$, then (as noticed in the introduction) H is a cyclic subgroup. If p is a prime such that $pH \neq H$, then H/pH is simple, and using again $L(G) = [0, H] \cup [H, G]$, it is the smallest nonzero subgroup of G/pH. Hence G/pH is cocyclic and, having elements of order p (in H/pH), must be a p-group. Since an infinite cyclic group is not a BP-group, using Lemma 1.2, we obtain $G = H_1 \oplus H_2$ with cocyclic p-group H_1 , cyclic q-group H_2 , q and p are coprime and $H_2 \leq pH \leq H$. Obviously, $H_1 \not\leq H$ (otherwise G = H) so that $H_2 \leq H \leq H_1$. This implies $H_2 = 0$, and so G is cocyclic. Since $\mathbf{Z}(p)$ is not satisfying (**B**), G has the requested form. The converse is immediate (the subgroup lattice of $\mathbf{Z}(p^n)$ with $n \in \mathbf{N} \cup \{\infty\}$, $n \geq 2$ is a chain with at least 3 elements). \Box

Using this we obtain at once

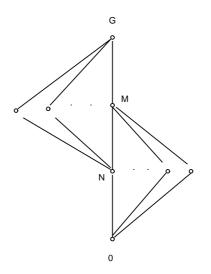
Theorem 2.1 A group satisfies (**B**) if and only if $G \simeq \mathbf{Z}(p^n)$ with $n \ge 3$.

Proof. If $L(G) = [0, M] \cup [N, G]$ and $M \leq N$ then $L(G) = [0, N] \cup [N, G]$ and so G is a BP-group. Hence G is cocyclic. Since the conditions $0 \neq M \neq N \neq G$ require at least 4 elements in $L(G), G \simeq \mathbb{Z}(p^n)$ with $n \geq 3$.

The converse is obvious. \Box

3 Abelian groups with (C)

In this section we consider two proper subgroups N < M such that $L(G) = [0, M] \cup [N, G]$. Thus the subgroup lattice looks like this [a3.eps]



Now $L(G) = [0, M] \cup [N, G]$ and $[0, M] \cap [N, G] = [M, N]$. Moreover, $[0, N] \subseteq [0, M]$ and $[M, G] \subseteq [N, G]$.

Theorem 3.1 If a group G satisfies (C) then G is a torsion group and there exists a prime p such that G_p is a BP-group or satisfies (C). Conversely, if G is a torsion group, $G_p \neq G$ for a prime p and G_p is a BP-group or satisfies (C), then G satisfies (C).

Proof. Let 0 < N < M < G be such that $L(G) = [0, M] \cup [N, G]$.

If G is not a torsion group, there exists an infinite order element $x \in G$ such that $x \notin M$ (otherwise, since the infinite order elements generate any group, M = G). Then $0 < N \leq M \cap \langle x \rangle < \langle x \rangle$. If $L \leq \langle x \rangle$ then $L \leq M$ or $N \leq L$, hence $L \leq M \cap \langle x \rangle$ or $N \leq L$. Therefore $\langle x \rangle$ is a BP-group or satisfies (C), but it is easy to see that no infinite cyclic group satisfies these properties (as for (C), if $0 < n\mathbf{Z} < m\mathbf{Z} < \mathbf{Z}$ and p is a prime not dividing n, then $p\mathbf{Z} \notin [0, m\mathbf{Z}] \cup [n\mathbf{Z}, \mathbf{Z}]$). This contradiction shows that G is a torsion group.

Suppose no component G_p is a BP-group or satisfies (C). Since $M \neq G$, there exists a prime p such that $M_p \neq G_p$. If $N_p = 0$, then $G_p \subseteq M$ ($N \subseteq G_p$ is not possible, N being a proper subgroup), hence $M_p = G_p$. Therefore $0 < N_p \leq M_p < G_p$ and $L(G_p) \neq [0, M_p] \cup [N_p, G_p]$. Then we can find $H_p \leq G_p$ such that $H_p \setminus M_p \neq \emptyset$ and $N_p \setminus H_p \neq \emptyset$. It follows $H_p \setminus M \neq \emptyset$ and $N \setminus H_p \neq \emptyset$, a contradiction.

Conversely, suppose G is torsion and G_p is a BP-group or satisfies (**C**). Then we can find subgroups $0 < N_p \leq M_p < G_p$ such that $L(G_p) = [0, M_p] \cup [N_p, G_p]$. Set $M = M_p \oplus (\bigoplus_{q \neq p} G_q)$ and $N = N_p$. Thus 0 < N < M < G. If $H \leq G$, then $H = H_p \oplus (\bigoplus_{q \neq p} H_q)$ with $H_p \leq G_p$ and $\bigoplus_{q \neq p} H_q \leq \bigoplus_{q \neq p} G_q$. If $N_p \leq H_p$, then $H \in [N, G]$ and if $H_p \leq M_p$, then $H \leq M_p \oplus (\bigoplus_{q \neq p} H_q) \leq M_p \oplus (\bigoplus_{q \neq p} G_q) = M$. Actually, $G_p \neq G$ is needed only for a BP-group G_p not satisfying (**C**). \Box

Theorem 3.2 A p-group G satisfies (C) if and only if $G \cong \mathbb{Z}(p^n) \oplus B$ such that (i) $B \neq 0, n \in \mathbb{N}^* \cup \{\infty\}$ and $p^l B = 0$ holds for a positive integer l < n, or, ii) B = 0 and n > 2.

Proof. If G satisfies (**C**), we can suppose $N = \langle a \rangle \cong \mathbf{Z}(p)$. Let l > 0 be the smallest positive integer such that there exists $x \in G \setminus M$ with $p^l x = a$. Let $b \in G[p] \setminus \langle a \rangle$ and suppose $h_p(b) \ge l$. Then $b = p^l y$ for some $y \in M$ (if $y \notin M$ we have $a \in \langle y \rangle$, hence the rank of $\langle y \rangle [p]$ is at least 2, a contradiction). Thus $x + y \notin M$, and there exists a positive integer k such that kx + ky = a. If $k = p^r m$ with gcd(m; p) = 1 then $p^r(mx + my) = a$, hence $l \le r$. Moreover, $l \le r$ implies $ky \in \langle a \rangle$ and $a \in \langle y \rangle$ follows, a contradiction. Then $h_p(b) < l$ for all $b \in G[p] \setminus \langle a \rangle$ and so $p^l G[p] = \langle a \rangle$. Hence $p^l G$ is a cocyclic group.

If $p^l G$ is a cyclic group then G is bounded and (using [2], **27.2**) $G = H \oplus B$ where $H \cong \mathbb{Z}(p^n)$ with $n \ge l+1$, $a \in H$ and $p^l B = 0$ (otherwise there is $b \in B[p]$ with $h_p(b) \ge l$). If $p^l G$ is a quasicyclic group, then $G = p^l G \oplus B$ and $p^l B = 0$.

Moreover, if B = 0 then $G \cong \mathbb{Z}(p^n)$ and condition $M \neq N$ implies n > 2.

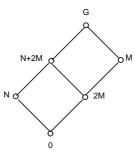
Conversely, if B = 0 then G satisfies condition (**C**) for $N = p^{n-1}G$ and M = pG. If $B \neq 0$ we choose $G = H \oplus B$ with $H \simeq \mathbf{Z}(p^n)$, 0 < l < n such that $p^l B = 0$, $N = H[p] = \langle a \rangle \cong \mathbf{Z}(p)$ and M = A + B where A is the subgroup of H of order p^l (obviously containing N - the subgroup lattice of H being a chain with a smallest element). If X is a subgroup of G such that $X \notin [0, M]$, then there exists $x = h + b \in X \setminus M$ with $h \in H$ and $b \in B$ such that $p^r = \operatorname{ord}(h) > p^l$ (otherwise $h \in A$ and $x \in M$). By $p^l B = 0$ hypothesis, $0 \neq p^{r-1}x = p^{r-1}h \in H[p] = N$, hence $\langle p^{r-1}h \rangle = N$ is included in X. \Box

The only BP-groups which do not satisfy (**B**), nor (**C**) are $\mathbf{Z}(p^2)$ for any prime number p. Hence

Corollary 3.1 A group G satisfies (C) if and only if it is a torsion group with a primary component $\mathbf{Z}(p^n)$ for $n \ge 3$, or $G_p \cong \mathbf{Z}(p^n) \oplus B$ with n > 1 or ∞ and $p^l B = 0$ holds for a nonnegative integer l < n. \Box

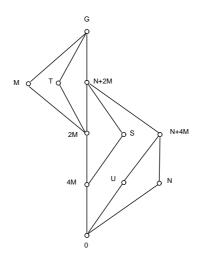
4 Comments

1. There are groups satisfying both conditions (A) and (C). As an example take $G = \mathbf{Z}(12) = \langle a, b | 3a = 4b = 0 \rangle$. Denoting by $N = \langle a \rangle$ and $M = \langle b \rangle$ the subgroup lattice looks like this [f3.eps]



Thus $L(G) = [0, M] \cup [N, G]$ for (A), and $L(G) = [0, N + 2M] \cup [2M, G]$ for (C).

2. If a group G satisfies, say, the condition (C) the pair M, N of subgroups is not necessarily unique. As an example, take the group $G = \mathbf{Z}(2) \oplus \mathbf{Z}(8) = \langle a, b | 2a = 8b = 0 \rangle$. If we denote by $N = \langle a \rangle$, $M = \langle b \rangle$, $S = \langle a + 2b \rangle$, $T = \langle a + b \rangle$, $U = \langle a + 4b \rangle$, the subgroup lattice is now [c5.eps]

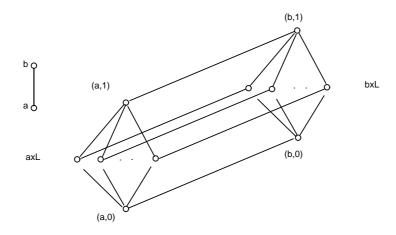


and $L(G) = [0, N + 2M] \cup [2M, G] = [0, N + 2M] \cup [4M, G].$

3. Our results generalize to lattices with 0 and 1, more or less arbitrary. In what follows we state some of these lattice versions.

- If a lattice L satisfies condition (A), i.e., $L = [0, m] \cup [n, 1]$ with incomparable elements m, n then
- (a) $[0, m \lor n] = [0, m] \cup [n, m \lor n]$ i.e., $[0, m \lor n]$ satisfies condition (A);
- (b) $[m \wedge n, 1] = [m \wedge n, m] \cup [n, 1]$ i.e., $[m \wedge n, 1]$ satisfies condition (A);
- (c) $[m \land n, m \lor n]$ satisfies condition (A).
- Every direct product of two lattices, the first being a finite chain and the second having 0 and 1, satisfies condition (A).

Proof. One uses the following Figure (for the sake of simplicity we have considered a chain with only two elements) [a4.eps]



Denoting the chain by $\{a, b\}$ and using elements in the Cartesian product $\{a, b\} \times L$, decomposition in the required intervals is $[(a, 0), (a, 1)] \cup [(b, 0), (b, 1)])$. \Box

A family of torsion groups is said to be *coprime* if the orders of elements in any two members are coprime. Using an early Theorem of Suzuki (see [3]): the groups with decomposable subgroup lattices are exactly the direct sums of coprime groups, we have an alternative proof for sufficiency of Theorem 1.1 in the special case k = 1:

let G be a torsion group of rank r(G) > 1 with a simple p-component, i.e. $G = N \oplus M$ with |N| = p and $M_p = 0$. Thus N and M are coprime, $L(G) \simeq L(N) \times L(M)$ and L(N)is a chain with two elements. Applying the previous result, L(G) satisfies condition (A).

- Complemented lattices are not satisfying condition (C).
- Let {L_i, i ∈ I} be an arbitrary set of bounded (i.e., with 0_i and 1_i) lattices, at least one of these satisfying condition (C). Then the direct product L = ∏_{i∈I} L_i satisfies condition (C). Conversely, if L satisfies condition (C), i.e. L = [0, α] ∪ [β, 1] and for an index j ∈ I, 0_j < β_j < α_j < 1_j, then L_j satisfies condition (C).
- If a lattice satisfies condition (C), i.e., $L = [0, m] \cup [n, 1]$, then m is essential and n is superfluous in L. Moreover, every element disjoint with n belongs to [0, m].

Finally we mention the lattice version of our initial proof of case (A):

• Let L be a modular lattice, n an atom and m a dual atom in L such that $1 = n \lor m$ and $n \land m = 0$. Then $L = [0, m] \cup [n, 1]$ if and only if for every element v in [0, m], n has a unique (relative) complement (namely v) in the sublattice $[0, n \lor v]$.

Using this, one can show that, excepting the case $1 = n \lor m$ and $n \land m = 0$, (C) follows from (A).

Acknowledgment. Thanks are due to the referee for his (her) valuable suggestions and improvements.

References

- Călugăreanu G., Deaconescu M., Breaking points in subgroup lattices. Groups St Andrews 2001 in Oxford (Proceedings Volume 1), p. 59 - 62, Cambridge University Press (2003).
- [2] Fuchs L., Infinite Abelian Groups, vol. 1 and 2. 1970, 1973, Academic Press, New York, London.
- [3] Schmidt R., Subgroup lattices of groups. de Gruyter Expositions in Mathematics, 14. Walter de Gruyter.
- [4] Tuma J., Intervals in subgroup lattices of infinite groups. J. Algebra 125 (1989), no. 2, 367–399.
- [5] Whitman Philip M., Lattices, equivalence relations, and subgroups. Bull. Amer. Math. Soc. 52, (1946), 507–522.