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Abstract

In this note we characterize the abelian groups G which have two different proper
subgroups N and M such that the subgroup lattice L(G) = [0,M ] ∪ [N,G] is the
union of these intervals.

For every subgroup H of an arbitrary group G, the interval [H, G] is a compactly
generated (algebraic) sublattice in the subgroup lattice L(G).

After 1989, when Tuma ([4]) showed that every algebraic lattice is isomorphic to an
interval in the subgroup lattice of some group (improving Whitman’s theorem ([5], 1946)
- every lattice is isomorphic to a sublattice of the subgroup lattice of a group - as far as
possible), an increasing role of intervals, in subgroup lattices of groups, was noticed.

In [1], an arbitrary group G was called a BP-group if it has a proper subgroup H such
that the subgroup lattice L(G) is the union of the intervals [1, H ] and [H, G] (i.e., any
subgroup of G is either contained in H or contains H). The subgroup H was called a
breaking point for the lattice L(G). It was pointed out that the abelian BP-groups are
the nonsimple cocyclic groups (i.e., up to isomorphism, Z(pk) with k > 1 or ∞).

Roland Schmidt suggested the study of finite groups which satisfy a weaker condition:
groups G having two proper subgroups N and M such that every subgroup H of G either
contains N or is contained in M . In this situation the subgroup lattice L(G) is again
union of two intervals, namely [1, M ] and [N, G] (such groups appeared in the study of
affinities of groups - see for example 9.4.14 in [3] - but there are much more examples of
this kind).

In this paper, instead of finite groups, we characterize the abelian groups which share
this property. Our result is the following:

Theorem 1 An abelian group G has two proper subgroups N 6= M such that the subgroup
lattice L(G) = [0, M ]∪[N, G] if and only if G is a torsion group with a primary component
Gp

∼= Z(pn)⊕B, n ∈ N∗ ∪ {∞} such that plB = 0 holds for a nonnegative integer l < n.

Additive notation is used and from now on, ”group” means ”abelian group”. N
denotes the set of all nonnegative integers, P denotes the set of all prime numbers and
standard interval notation is used. hp(b) denotes the p-height of b.

∗Keywords: subgroup lattice, interval, torsion abelian group, cocyclic groups. AMS classification: 06
C 99, 20 K 10, 20 K 27
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We first mention the following simple
Necessary condition: N must be cyclic. Indeed, take x ∈ G \ M . Then 〈x〉 ∈ [0, M ]
being not possible, 〈x〉 ∈ [N, G] or N ≤ 〈x〉.

Next, notice there are three distinct possibilities with respect to subgroups N and M :
(A) N and M are not comparable;
(B) M < N ;
(C) N < M (e.g., the above mentioned example [3]).

1 Abelian groups with (A)

In this section we suppose M and N not comparable and L(G) = [0, M ]∪[N, G]. In this
case [0, M ] ∩ [N, G] = ∅ (otherwise N ≤ M). The following remarks are straightforward

(a) M ∩ N is the largest element in [0, N) and M + N is the smallest element in
(M, G].

(b) L(M + N) = [0, M ] ∪ [N, N + M ], i.e., N + M has property (A).
(c) L(G/(M ∩ N)) = [0, M/(M ∩ N)] ∪ [N/(M ∩ N), G/(M ∩ N)], i.e., G/(M ∩ N)

has property (A).
(d) (M + N)/(M ∩ N) has property (A).

Actually, more can be proved

Lemma 1.1 If L(G) = [0, M ] ∪ [N, G], there is a prime number p such that
(a) N is a (co)cyclic p-group and M ∩ N = pN is maximal in N ;
(b) G/M and G/(M + N) are p-groups.

Proof. (a) We have already noticed that N has to be cyclic. By the above remark
(a), N is a (co)cyclic p-group (for a suitable prime number p). Moreover, since M ∩N is
its largest (proper) subgroup, pN = M ∩ N .

To prove (b), we observe that G/M is a cocyclic group since it has a smallest subgroup,
namely (M + N)/M . Moreover, since (M + N)/M ∼= N/(N ∩ M) ∼= Z(p), G/M is a
cocyclic p-group, and so G/(M + N) has the same property. 2

Therefore the subgroup lattice is represented by the following diagram [u1.eps]
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If N ≃ Z(pk) it is readily seen that for k = 1, N is minimal and hence the sum N +M
is direct (otherwise N ∩ M = N and N , M are comparable). Actually this is the only
case N ∩ M = 0.

The following lemma will be used in the proofs of the main results of both this and
next sections.

Lemma 1.2 For a group G and g ∈ G let p be a prime such that K = G/〈g〉 is cocyclic
p-group. If hp(g) 6= 0 and G is not infinite cyclic, then G = H1 ⊕H2 for cocyclic p-group
H1 and finite cyclic group H2 of coprime order with p such that H2 ≤ 〈g〉 (H2 = 0 is not
excluded).

Proof. Since for cocyclic group G the decomposition is trivial, suppose G is not
cocyclic (and so g 6= 0). As r(G) ≤ r(K) + r(〈g〉) = 2, we have r(G) = 2 and by
r0(G) = r0(〈g〉)+ r0(K) ≤ 1, we obtain G = H1 ⊕H2 with r(H1) = r(H2) = 1 - i.e., each
Hi is cocyclic or infinite cyclic (if r0(G) = 1, the torsion subgroup of G is cocyclic, hence
G splits). If g = h1 + h2 with hi ∈ Hi, since hp(g) ≥ 1, there exist x1 ∈ H1 and x2 ∈ H2

such that px1 = h1 and px2 = h2. Moreover, L(G/〈g〉) is a chain and we can suppose
x2 + 〈g〉 ∈ (〈x1〉 + 〈g〉)/〈g〉.

Thus x2 ∈ 〈x1〉 + 〈g〉 and x2 = sx1 + tg or px2 = spx1 + tpg for suitable integers s, t.
Hence h2 = sh1 + tp(h1 + h2) and, the sum H1 ⊕ H2 being direct, (tp − 1)h2 = 0.

If h2 = 0 then g ∈ H1 and K is cocyclic if and only if 〈g〉 = H1 or H2 = 0. In the first
case hp(g) = 0, hence H2 = 0 and G = H1 is a cocyclic p-group (since, by hypothesis, G
is not infinite cyclic).

If h2 6= 0, the order of h2 (say l) is finite and coprime with p. Therefore H2 is a
cocyclic q-group (if l is a power of the prime q) and this implies H2 ≤ 〈g〉 (otherwise
G/〈g〉 is not p-group). Hence there exists a nonzero integer k such that h2 = kh1 + kh2,
and so kh1 = 0. Then H1 is also cocyclic and necessarily a p-group. 2

Here is the structure theorem for case (A):

Theorem 1.1 A group G satisfies (A) if and only if G is torsion with a cocyclic primary
component and r(G) > 1.

Proof. According to Lemma 1.1, let p be a prime such that N = 〈a〉 is cyclic of order
pk. If m ∈ M \ N then m + a /∈ M (since a /∈ M) and N ≤ 〈m + a〉. Since N 6= 0 is
torsion, m + a and therefore m are of finite order. Hence M and, together with G/M , G
are torsion.

Further, we show that Mp ⊆ N . Indeed, if m ∈ Mp, again, N ⊆ 〈a + m〉 so that
a = s(a + m) and (1 − s)a = sm ∈ N ∩ M = pN for a suitable nonzero integer s.
Thus s ≡ 1 (mod p) and let t be an inverse of s modulo the order of m ∈ Mp. Thus
m = tsm = t(1 − s)a ∈ N .

Now, N and M being not comparable, Mp ⊂ N and hence pN = M ∩N = Mp ∩N =
Mp.

Since Mp = pN ≤ Gp, Lemma 1.2 shows that Gp is a cocyclic group.
Conversely, suppose G = Gp ⊕ K with Gp ≃ Z(pl), K 6= 0, Kp = 0 and take

N = Gp[p] = 〈a〉 and M = K. If H is a subgroup of G such that H � K we show
N ≤ H .
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Indeed, since H � K, there is an element h ∈ H \ K. If this element decomposes as
h = gp + k (gp ∈ Gp, k ∈ K), then gp 6= 0 and for a suitable multiple psh = ps(gp + k)
we have 0 6= psgp ∈ N respectively psk ∈ K. Since K is torsion and Kp = 0, denoting
by u the order of psk, u and p are coprime and upsgp ∈ H . Finally, psgp ∈ H and thus
N = 〈psgp〉 ≤ H . 2

Remarks. 1) The referee pointed out that a proof in Case (A) can be reduced to the
proof of Case (B) using Lemma 1.1. Our proof uses Lemma 1.2 in both cases.

2) With above notations, G/M =
⊕

q∈P

(Gq/Mq) is a p-group. Hence Gq = Mq for all

primes q 6= p and M = pN ⊕
⊕

q 6=p,q∈P

Gq.

2 Abelian groups with (B)

Now we deal with subgroup lattices of the following type [a1.eps]

. .

.   .

G

0

M

N

Here again [0, M ] ∩ [N, G] = ∅.

Although the following result was already stated in [1], we supply a specific ”abelian”
proof:

Lemma 2.1 G is an abelian BP-group if and only if there is a prime p and k ∈ N∗∪{∞},
k ≥ 2 such that G ≃ Z(pk).

Proof. If L(G) = [0, H ] ∪ [H, G], then (as noticed in the introduction) H is a cyclic
subgroup. If p is a prime such that pH 6= H , then H/pH is simple, and using again
L(G) = [0, H ] ∪ [H, G], it is the smallest nonzero subgroup of G/pH . Hence G/pH is
cocyclic and, having elements of order p (in H/pH), must be a p-group. Since an infinite
cyclic group is not a BP-group, using Lemma 1.2, we obtain G = H1 ⊕ H2 with cocyclic
p-group H1, cyclic q-group H2, q and p are coprime and H2 ≤ pH ≤ H . Obviously,
H1 � H (otherwise G = H) so that H2 ≤ H ≤ H1. This implies H2 = 0, and so G is
cocyclic. Since Z(p) is not satisfying (B), G has the requested form.
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The converse is immediate (the subgroup lattice of Z(pn) with n ∈ N∪{∞}, n ≥ 2 is
a chain with at least 3 elements). 2

Using this we obtain at once

Theorem 2.1 A group satisfies (B) if and only if G ≃ Z(pn) with n ≥ 3.

Proof. If L(G) = [0, M ]∪ [N, G] and M ≤ N then L(G) = [0, N ]∪ [N, G] and so G is
a BP-group. Hence G is cocyclic. Since the conditions 0 6= M 6= N 6= G require at least
4 elements in L(G), G ≃ Z(pn) with n ≥ 3.

The converse is obvious. 2

3 Abelian groups with (C)

In this section we consider two proper subgroups N < M such that L(G) = [0, M ] ∪
[N, G]. Thus the subgroup lattice looks like this [a3.eps]

..

. .

G

M

N

0

Now L(G) = [0, M ] ∪ [N, G] and [0, M ] ∩ [N, G] = [M, N ]. Moreover, [0, N ] ⊆ [0, M ]
and [M, G] ⊆ [N, G].

Theorem 3.1 If a group G satisfies (C) then G is a torsion group and there exists a
prime p such that Gp is a BP-group or satisfies (C). Conversely, if G is a torsion group,
Gp 6= G for a prime p and Gp is a BP-group or satisfies (C), then G satisfies (C).

Proof. Let 0 < N < M < G be such that L(G) = [0, M ] ∪ [N, G].
If G is not a torsion group, there exists an infinite order element x ∈ G such that

x /∈ M (otherwise, since the infinite order elements generate any group, M = G). Then
0 < N ≤ M ∩ 〈x〉 < 〈x〉. If L ≤ 〈x〉 then L ≤ M or N ≤ L, hence L ≤ M ∩ 〈x〉 or
N ≤ L. Therefore 〈x〉 is a BP-group or satisfies (C), but it is easy to see that no infinite
cyclic group satisfies these properties (as for (C), if 0 < nZ < mZ < Z and p is a prime
not dividing n, then pZ /∈ [0, mZ]∪ [nZ,Z]). This contradiction shows that G is a torsion
group.

Suppose no component Gp is a BP-group or satisfies (C). Since M 6= G, there exists
a prime p such that Mp 6= Gp. If Np = 0, then Gp ⊆ M (N ⊆ Gp is not possible,

5



N being a proper subgroup), hence Mp = Gp. Therefore 0 < Np ≤ Mp < Gp and
L(Gp) 6= [0, Mp] ∪ [Np, Gp]. Then we can find Hp ≤ Gp such that Hp \ Mp 6= ∅ and
Np \ Hp 6= ∅. It follows Hp \ M 6= ∅ and N \ Hp 6= ∅, a contradiction.

Conversely, suppose G is torsion and Gp is a BP-group or satisfies (C). Then we can
find subgroups 0 < Np ≤ Mp < Gp such that L(Gp) = [0, Mp] ∪ [Np, Gp]. Set M =

Mp ⊕ (
⊕

q 6=p

Gq) and N = Np. Thus 0 < N < M < G. If H ≤ G, then H = Hp ⊕ (
⊕

q 6=p

Hq)

with Hp ≤ Gp and
⊕

q 6=p

Hq ≤
⊕

q 6=p

Gq. If Np ≤ Hp, then H ∈ [N, G] and if Hp ≤ Mp, then

H ≤ Mp ⊕ (
⊕

q 6=p

Hq) ≤ Mp ⊕ (
⊕

q 6=p

Gq) = M .

Actually, Gp 6= G is needed only for a BP-group Gp not satisfying (C). 2

Theorem 3.2 A p-group G satisfies (C) if and only if G ∼= Z(pn) ⊕ B such that (i)
B 6= 0, n ∈ N∗ ∪ {∞} and plB = 0 holds for a positive integer l < n, or, ii) B = 0 and
n > 2.

Proof. If G satisfies (C), we can suppose N = 〈a〉 ∼= Z(p). Let l > 0 be the smallest
positive integer such that there exists x ∈ G \ M with plx = a. Let b ∈ G[p] \ 〈a〉 and
suppose hp(b) ≥ l. Then b = ply for some y ∈ M (if y /∈ M we have a ∈ 〈y〉, hence the
rank of 〈y〉[p] is at least 2, a contradiction). Thus x + y /∈ M , and there exists a positive
integer k such that kx + ky = a. If k = prm with gcd(m; p) = 1 then pr(mx + my) = a,
hence l ≤ r. Moreover, l ≤ r implies ky ∈ 〈a〉 and a ∈ 〈y〉 follows, a contradiction. Then
hp(b) < l for all b ∈ G[p] \ 〈a〉 and so plG[p] = 〈a〉. Hence plG is a cocyclic group.

If plG is a cyclic group then G is bounded and (using [2], 27.2) G = H ⊕ B where
H ∼= Z(pn) with n ≥ l+1, a ∈ H and plB = 0 (otherwise there is b ∈ B[p] with hp(b) ≥ l).
If plG is a quasicyclic group, then G = plG ⊕ B and plB = 0.

Moreover, if B = 0 then G ∼= Z(pn) and condition M 6= N implies n > 2.
Conversely, if B = 0 then G satisfies condition (C) for N = pn−1G and M = pG.

If B 6= 0 we choose G = H ⊕ B with H ≃ Z(pn), 0 < l < n such that plB = 0,
N = H [p] = 〈a〉 ∼= Z(p) and M = A + B where A is the subgroup of H of order pl

(obviously containing N - the subgroup lattice of H being a chain with a smallest element).
If X is a subgroup of G such that X /∈ [0, M ], then there exists x = h + b ∈ X \ M with
h ∈ H and b ∈ B such that pr = ord(h) > pl (otherwise h ∈ A and x ∈ M). By plB = 0
hypothesis, 0 6= pr−1x = pr−1h ∈ H [p] = N , hence 〈pr−1h〉 = N is included in X. 2

The only BP-groups which do not satisfy (B), nor (C) are Z(p2) for any prime number
p. Hence

Corollary 3.1 A group G satisfies (C) if and only if it is a torsion group with a primary
component Z(pn) for n ≥ 3, or Gp

∼= Z(pn) ⊕ B with n > 1 or ∞ and plB = 0 holds for
a nonnegative integer l < n. 2

4 Comments

1. There are groups satisfying both conditions (A) and (C). As an example take
G = Z(12) = 〈a, b|3a = 4b = 0〉. Denoting by N = 〈a〉 and M = 〈b〉 the subgroup lattice
looks like this [f3.eps]
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G

M

N

0

N+2M

2M

Thus L(G) = [0, M ] ∪ [N, G] for (A), and L(G) = [0, N + 2M ] ∪ [2M, G] for (C).

2. If a group G satisfies, say, the condition (C) the pair M , N of subgroups is not
necessarily unique. As an example, take the group G = Z(2)⊕Z(8) = 〈a, b|2a = 8b = 0〉.
If we denote by N = 〈a〉, M = 〈b〉, S = 〈a + 2b〉, T = 〈a + b〉, U = 〈a + 4b〉, the subgroup
lattice is now [c5.eps]

G

N+2MM T

2M

4M

S N+4M

NU

0

and L(G) = [0, N + 2M ] ∪ [2M, G] = [0, N + 2M ] ∪ [4M, G].

3. Our results generalize to lattices with 0 and 1, more or less arbitrary. In what
follows we state some of these lattice versions.

• If a lattice L satisfies condition (A), i.e., L = [0, m] ∪ [n, 1] with incomparable
elements m, n then

(a) [0, m ∨ n] = [0, m] ∪ [n, m ∨ n] i.e., [0, m ∨ n] satisfies condition (A);
(b) [m ∧ n, 1] = [m ∧ n, m] ∪ [n, 1] i.e., [m ∧ n, 1] satisfies condition (A);
(c) [m ∧ n, m ∨ n] satisfies condition (A).

• Every direct product of two lattices, the first being a finite chain and the second
having 0 and 1, satisfies condition (A).

Proof. One uses the following Figure (for the sake of simplicity we have considered a
chain with only two elements) [a4.eps]
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b

a

. .

. .

(a,0)

(a,1)

(b,1)

(b,0)

bxL

axL

Denoting the chain by {a, b} and using elements in the Cartesian product {a, b} ×L,
decomposition in the required intervals is [(a, 0), (a, 1)] ∪ [(b, 0), (b, 1)]). 2

A family of torsion groups is said to be coprime if the orders of elements in any two
members are coprime. Using an early Theorem of Suzuki (see [3]): the groups with
decomposable subgroup lattices are exactly the direct sums of coprime groups, we have
an alternative proof for sufficiency of Theorem 1.1 in the special case k = 1:

let G be a torsion group of rank r(G) > 1 with a simple p-component, i.e. G = N⊕M
with |N | = p and Mp = 0. Thus N and M are coprime, L(G) ≃ L(N)×L(M) and L(N)
is a chain with two elements. Applying the previous result, L(G) satisfies condition (A).
2

• Complemented lattices are not satisfying condition (C).

• Let {Li, i ∈ I} be an arbitrary set of bounded (i.e., with 0i and 1i) lattices, at least

one of these satisfying condition (C). Then the direct product L =
∏

i∈I

Li satisfies

condition (C). Conversely, if L satisfies condition (C), i.e. L = [0, α] ∪ [β, 1] and
for an index j ∈ I, 0j < βj < αj < 1j, then Lj satisfies condition (C).

• If a lattice satisfies condition (C), i.e., L = [0, m]∪ [n, 1], then m is essential and n
is superfluous in L. Moreover, every element disjoint with n belongs to [0, m].

Finally we mention the lattice version of our initial proof of case (A):

• Let L be a modular lattice, n an atom and m a dual atom in L such that 1 = n∨m
and n ∧ m = 0. Then L = [0, m] ∪ [n, 1] if and only if for every element v in [0, m],
n has a unique (relative) complement (namely v) in the sublattice [0, n ∨ v].

Using this, one can show that, excepting the case 1 = n ∨ m and n ∧ m = 0, (C)
follows from (A).

Acknowledgment. Thanks are due to the referee for his (her) valuable suggestions
and improvements.
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