Zero determinants revisited

G. Călugăreanu, H. F. Pop

June 20, 2020

A ring is called $G C D$ if every two nonzero elements have a gretest common divisor. In such rings we can prove that if a divides a product $b c$ and $\operatorname{gcd}(a ; b)=$ 1 then a divides c.

Proposition 1 Let R be a $G C D$ (commutative) domain and $A \in \mathbb{M}_{2}(R)$. Then $\operatorname{det}(A)=0$ iff there exist $a, b, c, d \in R$ with $A=\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]$.

Proof. The "only if" part is easy. For the "if" part, let $A=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]$ with $x t=y z$. Denote $d=\operatorname{gcd}(x ; z)$ and $x=d x^{\prime}, z=d z^{\prime}$ with coprime x^{\prime}, z^{\prime}. Then $x^{\prime} t=y z^{\prime}$ and so x^{\prime} divides y and z^{\prime} divides t. If $y=k x^{\prime}$ and $t=l z^{\prime}$ it is readily seen that $k=l$ and so $\left[\begin{array}{c}y \\ t\end{array}\right]=k\left[\begin{array}{l}x^{\prime} \\ z^{\prime}\end{array}\right]$. Finally, $\left[\begin{array}{l}x^{\prime} \\ z^{\prime}\end{array}\right]\left[\begin{array}{ll}d & k\end{array}\right]=A$, as desired.

The proof shows how we decompose any given 2×2 matrix.
Examples. 1) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}1 & 2\end{array}\right]$.
2) $\begin{aligned} & A=\left[\begin{array}{ll}3 & 12 \\ 9 & 36\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]\left[\begin{array}{ll}3 & 12\end{array}\right] . \\ & \text { 3) } A=\left[\begin{array}{ll}4 & 12 \\ 6 & 24\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]\left[\begin{array}{ll}2 & 6\end{array}\right] .\end{aligned}$

Can we generalize this to the $n \times n$ case ? Or at least for 3×3 ? No.
Proposition 2 Let R be a GDS (commutative) domain and $A \in \mathbb{M}_{n}(R)$. Then $\operatorname{det}(A)=0$ iff there exist $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in R$ with $A=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]\left[\begin{array}{lll}b_{1} & \cdots & b_{n}\end{array}\right]$.

Proof. The "only if" part holds over any commutative ring since it follows from the properties of determinants.

$$
\begin{aligned}
& \text { Indeed, } \operatorname{det}\left(\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & \cdots & b_{n}
\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{n} \\
a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{n} \\
\vdots & \vdots & & \vdots \\
a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{n}
\end{array}\right]= \\
& a_{1} a_{2} \operatorname{det}\left[\begin{array}{cccc}
b_{1} & b_{2} & \cdots & b_{n} \\
b_{1} & b_{2} & \cdots & b_{n} \\
\vdots & \vdots & & \vdots \\
a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{n}
\end{array}\right]=0 . \\
& \text { The "if" part fails. }
\end{aligned}
$$

Example. Take A (over any commutative domain; e.g. \mathbb{Z}) with equal nonzero rows 1 and 2 and in row 3 we have at least one zero entry but also a nonzero entry.

That is something like $A=\left[\begin{array}{lll}a & b & c \\ a & b & c \\ 0 & 0 & d\end{array}\right]$ withe nonzero a, b, c, c, d. Then $\operatorname{det}(A)=0$ since two rows coincide but A is not a product $C R$ with $C=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $R=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]$. Indeed, the 3 -rd row of $C R$ is $\left[\begin{array}{lll}a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right]=$ $\left[\begin{array}{lll}0 & 0 & d\end{array}\right]$ (since $d \neq 0$, we have $a_{3} \neq 0$ over any domain) implies $b_{1}=b_{2}=0$. But this contradicts, for example, $a_{1} b_{1}=a \neq 0$.

Therefore, if one row has zero and nonzero entries, and in the column of one zero we have one nonzero entry, the matrix is not a product $C R$. The zero determinant condition is easy to realize: two dependent (or even equal) rows. This clearly holds also in the general $n \times n$ case.

